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1.0 INTRODUCTION

This is the final report on the program "Integration of Statistical and Physical
Models of Short Fatigue Crack Growth". It reviews progress of the entire period of the
contract from January 15, 1985 through April 14, 1988.

The report consists primarily of: 1) a summary that draws attention to signifi-
cant achievements; 2) an account of various avenues of future research and applications;
and 3) copies of articles published under the program.
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2.0 SIGNIFICANT ACHIEVEMENTS

The purpose of this program was to explore the possibility of constructing

physically based probabilistic models of small* fatigue crack growth. The degree of

detail and explicitness in which the underlying physics of crack propagation are repre-

sented in such a model can be chosen with great variety.1 - 5 In general, the more physi-

cal detail the model embraces, the greater its potential for accuracy, 1" 2 provided the

underlying physics are correct. When less physical detail is incorporated, more reliance S
is placed on merely fitting parametric curves or models to statistical data. 3 - 5 While the

potential accuracy is inferior in the latter case, the models are more easily implemented

and apply equally to a wider class of materials and the necessity for painstaking labora-
tory studies is reduced.

One general conclusion reached in this program concerns the optimal level of
detail for a probabilistic model of small fatigue crack growth. It has been shown that,
for accurate prediction of fluctuations in crack velocity and remaining lifetime, a

probabilistic model should possess at least two dimensions. If a model is couched in

terms of only one independent variable, which has traditionally been the crack length,

then it is impossible to avoid significant errors in statistical predictions. This necessi-

tates an overly conservative implementation. While this conclusion has been based in the

present work on physically based analyses of crack growth, 1'2 '6 ' 7 it is important to note

that it can also be reached by purely statistical analyses of long crack data. 8 The impor-

tance of a second independent variable is also implicit in the early data analysis of Lin

and Yang, 9 and the more recent work of Bogdanoff and Kozin.1 0 The importance of our
own contribution is that I) the multidimensional nature of fatigue crack growth has been 0

shown more irrefutably than ever, especially in the small crack regime, and 2) this

fundamental maxim has been associated directly with the underlying mechanics of crack

growth.

The association with the underlying mechanics rests on our being able to

account for the fluctuations in crack velocity (and hence lifetime) observed under uni-

* A 'small' crack is herein one whose spatial dimensions are all of the same order of mag-
nitude as the grain size. See the Second Annual Report, page 1, for remarks on the dis-
tinction between small and short cracks.

2
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form cyclic loading in terms of the randomness of the microstructure. This was achieved

only in Monte Carlo simulations, in which the irregular shape of the crack front is calcu-

lated in detail. The distributions of surface crack velocities, dc/dN, and the remaining

lifetimes of surface-breaking cracks were shown to depend strongly on fluctuations in

both the gross crack shape, e.g., the aspect ratio a/2c (depth/surface length) and local

irregularities in shape, especially retardation of the surface tips relative to the subsur-

face crack front. Now that the road to understanding these relationships is clear, it is
I

quite feasible to incorporate them in a mathematically simpler and computationally more

efficient probabilistic model than the Monte Carlo simulations. One such model was

formulated in the program's first year. In addition to the crack length 2c, that model

possesses a second independent random variable, the growth control variable u. The vari-

able u can be interpreted as befits any part'cular application, and probability transition

matrices can be constructed to describe its stochastic evolution accordingly. In one

application already presented, it was defined to represent the average grain size in the

neighborhood of the crack tip,6 a choice appropriate to describing the statistics of rough-

ness-induced closure. The variable u could also be defined to represent the evolving

shape of the crack. The calculation of probability transition matrices to define the

statistics of the evolution of the crack shape would not be trivial, but it could be done in

principle by analyzing the statistics of shape predicted by the Monte Carlo simulations.

This is one of the most appealing items for future research.

In the course of developing accurate descriptions of stochastic crack growth, it

became evident that analyzing the experimental statistics of small cracks is an impor-

tant but sadly overlooked way of elucidating the mechanics of their growth. The statis-

tics of crack shape are in particular the most direct way available of comparing the

equality of laws governing the growth of surface and subsurface segments of the crack

front. 1' 7 For example, the degree of irregularity of the crack and its dependence on

crack length are quite sensitive to the strength of microstructural influences. The

statistics of the aspect ratio reveal much about the isotropy of the mechanics of growth.

3 1
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3.0 OUTLOOK

This program has the virtue of having posed but left unanswered many ques-

tions that did not exist and could not have been foreseen before it began. In this section,

these and other outstanding problems are reviewed and sensible approaches to solving

them are outlined.

The greatest challenge now facing those desiring to understand the mechanics

of small cracks is to measure various of their statistics, especially of their shape. The

statistics of crack shape have been shown to bear directly on fundamental questions such

as the equality or inequality of surface and subsurface mechanics, and the origin of cer-

tain features of the distribution of crack velocities, especially the high velocity tail,

which is of prime engineering importance. Of course, measurements of crack shape are

difficult and laborous, but they are feasible, even for small cracks. Both striations, as

left by intermittent underloads or overloads, and destructive sectioning have been suc-

cessful in the past. Measurement of crack shape ought also to be very illuminating in

studying the effect of overloads. For small cracks, one would conjecture that overloads

will affect different segments of the crack front to different degrees, depending on the

sizes of the grains in which they lie and their proximity to the free surface. The Monte

Carlo simulations will then allow analysis of the ensuing affects on the shape of the

crack front for any hypothetical laws: and comparison with experimental statistics will

then permit those laws to be tested and parameters in them to be evaluated.

As to the statistics of the surface velocity, dc/dN, this program has high-

lighted the inadequacy of the common form of their presentation in the literature. One

generally finds surface crack growth data presented as plots of dc/dN vs AK, where AK

has been calculated from the assumption that the crack is a smooth semi-ellipse. Now

&K for experiments at constant stress amplitude is effectively a measure of 2c. There-

fore, the statistics of dc/dN embodied in such a plot are those of cracks of given length.

It would be far more enlightening to know the distribution of dc/dN for all cracks after a

given number of cycles.7 Tables of 2c vs N would convey much more information to

retrospective analysts, especially concerning the statistics of deceleration and arrest.

Yet, even in reports of large statistical studies, such tables do not appear. This must be

rectified in future publications.

4
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Another inadequacy of experimental reporting concerns the frequent and

uncritical use of surface replicas to study small cracks. Replicas are a practical and per-

haps necessary way of recording the history of a crack while it is too small to be easily

detected. However, their use leads to uncontrolled censoring of small crack statistics.

The cracks whose histories are included in the final data are those whose lengths at the

time the last replica is made exceed the minimum for easy detection. This normally

means that only relatively fast growing cracks are analyzed, which can obviously have a

severe effect on statistical averages. When such small crack data are compared to long

crack data at the same nominal AK, it is often observed that they appear to have higher

dc/dN. But it is just possible that they actually have the same average dc/dN as long

cracks, but a much wider variance. If only the faster small cracks in such a broad distri-

bution are included in the data, they will create the illusion that their average velocity

exceeds that of the average long crack. Realistic modeling such as the Monte Carlo

simulations will enable this question to be answered. If it turns out that censoring

accounts for much of the difference between small and long cracks, then hypotheses such

as that small cracks grow faster because they suffer no plasticity induced closure would

be thrown into doubt. The following conjecture ought then to be tested: that the
mechanics of small cracks are in fact the same as those of long cracks, with the principal

distinction being just that the random microstructure influences small cracks more

strongly, because they span fewer grains, and therefore causes more scatter in dc/dN.

The prominent role of crack shape in determining the statistics of dc/dN and

remaining lifetime suggests that shape will serve as an excellent quantity to be associ-

ated with the random variable u in the probabilistic model of Ref. 2. This association is

facilitated by the existence of the Monte Carlo simulations, which provide some obvious
means of calculating a priori the probability transition matrices required in Ref. 2. This

simple demonstration will be undertaken and written up for publication as homework in

the next few months.

If random microstructure is indeed the source of fluctuations in small crack

growth rates, then this should be borne out in correlation lengths for the covariance of

dc/dN, crack irregularity, fluctuations in aspect ratio etc. Experimental verification of

this, which requires records of 2c vs N for many cracks, would go far towards validating
physically based probabilistic models of growth. Indeed, whether a physically based

model of statistical growth is accurate is equivalent to the question of the accuracy of

5
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the higher moments it predicts. Correlation lengths are one very important property of

the higher moments. If there are insufficient data to measure them, then acceptance of

a physically based model is an act of faith.

'l.
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4.0 STATEMENT OF WORK

First Year

1. Incorporate models of microstructural short crack growth phenomena into a sto-

chastic damage growth model.

2. Compare model structures of various levels of complexity against synthetic data S

bases generated principally by Monte Carlo methods.

Second Year

3. Address the formulation and characterization of compound physical/statistical

models which account for load history and cyclic stress amplitude.

4. Integrate crack coalescence_ and stress overload effects into the models. S

Third Year

5. Develop a strategy for choosing the most advantageous formulation for a statistical

model in a given situation and specify a process of calibration that will optimize

predictions of remaining lifetime. 0%

6. Evaluate the performance of predictions made under a range in extremes of predic-

tive requirements.
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7.0 INTERACTIONS AND MEETINGS

In the third year of the program, an invited paper entitled "The Influence of

Crack Shape on the Statistics of Small Fatigue Crack Growth" was presented before the

Small Cracks Task Group at the April meeting of ASTM in Reno, NV.
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A PROBABILISTIC MODEL OF SHORT FATIGUE
CRACK GROWTH

B. N. Cox and W. L. MORRIS

Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360, U.S.A.

(Receited in final .form 24 June 1987)

Abstract-A probabilistic model is presented that draws a direct link between stochastic microstructure
and the statistics of measured growth rates. The model is formulated as a semi-Markov process. The
underlying Markov process describes the evolution of a growth control variable as an explicit function
of crack length. The growth control variable is open to a variety of interpretations, depending on the
mechanisms known to control growth in any given application. Elapsed fatigue cycles and the distribution
of times to failure are calculated by invoking an empirical or postulated law of growth rate. This law is
either a deterministic or probabilistic relationship between the growth control variable and the crack
velocity. It maN. and usually does, contain parameters that are evaluated by calibration against available
statistical data. This process guarantees a high level of robustness of the model's predictions. The
computational generalit) of the formulation facilitates the treatment of spectral loading.

NOMENCLATURE

a - Crack length. or some other measure of crack size
6 = Kronecker delta function
E = Operator generating expectation value

P.'= The cumulative probability distribution of u at the discrete crack length a,
. - Forward and backward correlation lengths

h, 1*(n) = Holding time: probability that nN, cycles elapse when the crack length increases from a, , to a, and u goes
from u, to u,

ju, - Second moment of the crack velocity
N = Number of elapsed fatigue cycles
N, = Number of cycles in each interval of discrete time grid

O),(k In)= Probability that u has the value u, upon its kth transition after nN, cycles given that it acquired the value
u, upon the k'th transition at time zero

x") = The probability mass function for u at crack length a,.
P"1 = The probability transition matrix for u. when the crack grows from length a,,_ - to length a,

p, - Covariance function
a = Amplitude of the external cyclic stress
a., = The root mean square deviation of u
u = The growth control variable

vr(a.tu) - The relationship between daidN ( rv) and u.

INTRODUCTION

A century of experimental research into fatigue crack growth has demonstrated that fatigue cracks
grow in an inherently stochastic manner. There are always large fluctuations, sometimes over an
order of magnitude or more, in macroscopic observables such as the instantaneous crack velocity,
da/dN, and the cycles to failure. Yet before the last decade there were very few attempts to analyze
quantitatively the relationship between these fluctuations and the intrinsic variability of the various
material characteristics, such as local grain size, yield stress, and crystal orientation, that control
the mechanics of growth. The attention of fundamental theories was usually restricted to the law
of average growth rate, and its dependence on stress level, average grain size, environment, etc.

419
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420 B. N. Cox and W. L. Moaals

The scatter in quantities of engineering importance, usually the time to failure, is still con-
ventionally treated by fitting ad hoc some convenient, analytic density function. The limits of safety
are demarked by a safety curve some number of standard deviations on the conservative side of
the average. The required number of standard deviations is established by rules of thumb and
experience.

More recently, significant efforts have been made to match more sophisticated and flexible
statistical models to experimental data. They include formulations in terms of diffusion
equations[l,2] and conservation equations for probability densities13], Monte Carlo
simulations[4,5]; Markov chains[7-10]; birth processes[13]; point processes[14]; and stochastic
differential equations [2,6,1 1]. But the variety in mathematical formulation does not constitute the
most important division between these various approaches. From a functional point of view, most
of them may instead be considered to fall into two categories.

In the first, more numerous category, the models begin with the least generality necessary to
reproduce the average and variance of engineering growth rate data (e.g. Refs [1, 2, 6, 7, 14, 15]).
In some cases, the sophistication has then been gradually increased as the relevance of further
details of the statistical data, such as the covariance of crack velocities measured at different
lengths, has been recognized[12]. These models usually purport to have some ability to calculate
the effects of changes in stress level, even to the case of spectral loading, but in a way that is based
on simplistic growth rate laws. Such approaches are probably valid accounts of the statistics of
cracks that grow according to linear elastic fracture mechanics. However, they are probably
inaccurate and certainly physically unrealistic when applied to the propagation of short fatigue
cracks. In many circumstances. short crack propagation constitutes most of the fatigue lifetime.

The second category of probabilistic models has attempted to address this shortcoming by
building explicitly upon detailed knowledge of the micromechanics of short crack growth. For
example, in certain heavily studied aluminum alloys, deterministic laws have been established that
describe the dependence of growth rate on the immediate microstructural environment of the tips
of surface fatigue cracks. The microstructure is itself stochastic, and it has been shown in Monte
Carlo simulations[5] and by a kinetic model [3] that the fluctuations observed in growth rate data
can be directly traced to fluctuations in the grains being traversed. These models have been and
will continue to be extremely useful in connecting raw growth data with micromechanical theories.
However, they incorporate the laws of dependence of velocity upon microstructure in a very explicit
way. They can only be applied when those laws have been carefully established by extensive and
painstaking experimental observations on the microscopic scale. Such experiments have always
been done in a controlled laboratory environment, and because of the time that they take, have
by necessity concentrated on the prevalent mechanism under just those restricted conditions. It is
not practicable to repeat them in an exhaustive set of tests for all possible loads and environments.
Therefore, models operating on such a detailed level can never be robust enough for engineering
application. One could never be sure that the failure of a part in field service would always be by
the mechanism or mechanisms studied so thoroughly in the controlled laboratory tests.

In short, there exists an important gap between the accomplishments of these two main categories
of probabilistic models. This present work has the aim of bridging the gap, by constructing robust
probabilistic models that nevertheless, by their very forms, retain the essential core of our
knowledge of the mechanics of short crack growth.

A small amount of prior work has sown the seeds of the approach to be followed here. Lin and
Yang[6] introduced the important idea of seeking a correlation length in statistical crack growth
data. This correlation length is a measure of the typical distance over which the material factors
controlling growth rate change. It may be a function of crack length, and it is an intrinsic material

:S
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property. Identifying such a correlation length, relating it to micromechanical theories of crack
growth, and investigating its dependence on crack length, are important aims of the present work.
Ghonem and Provan[13] explored the point of view that a crack front advances through a
stochastic environment with a distribution of material properties bearing on different segments of
it at any time. Although they did not themselves consider how this might lead to the definition
of a correlation length, it clearly may. Such models also lead to predictions of the dependence of
the scatter in measured crack velocities upon crack length. This functional dependence, which is
much more easily measured than that of the correlation length, will also be an object of study here.

The present work has the goal of continuing such efforts to link the statistics of measured crack
growth rates and micromechanical models of fatigue crack growth. Attention is focussed especially
on the role of the randomness of the microstructure that determines the growth of short fatigue
cracks. To this end, a new, very flexible computer-based probabilistic model has been formulated
on physical principles. In this model, the evolution of a growth control variable, u, is described
by a finite Markov chain. (This choice of formulation was inspired by the demonstration by
Bogdanoff and co-workers[7-12] of the power and flexibility of finite Markov chains in fatigue
problems.) The control variable is some measure of the local microstructural environment of the
crack tip or front, rather than the crack's length itself, and its evolution is described as a function
of the crack's length, rather than elapsed cycles. The elapsed cycles are calculated as an additive
process or holding time associated with the Markov chain, according to an empirical law relating
crack velocity to crack length and the control variable. (This structure is known as a semi-Markov
process or embedded Markov chain.) Because of the physical nature of the problem, the Markov
chain is nonhomogeneous (the statistics of the evolution of u are functions of the crack length),
which is an important generality. This and other generalizations make necessary carefully chosen
numerical algorithms.

The model will be useful both as a research tool and as a means of generating engineering
predictions. In the former role, it allows the assessment of the probabilistic implications of a great
variety of possible geometrical or mechanical models of crack growth. This is because of the broad
interpretations that it is possible to associate with the growth control variable. For engineering
applications, calibration procedures can be devised that ensure a high degree of robustness, while
preserving the advantage of the knowledge acquired during research of the functional form of the
statistical fluctuations, and their dependence on stress level and loading history.

The formulation itself, the arguments leading to it, and computational methods are described
in this paper. An example of the application of the model, to the analysis of short crack growth
data for Ti 6A1-2Sn-4Zr-6Mo, is presented in a companion paper[16] (henceforth referred to as
II). There it will be seen how the model allows the deduction of micromechanical information from
the magnitude and functional form of the scatter observed in gross crack growth data. The ability
of the model to treat stochastic loading is reviewed here, as well as other aspects of its generality
including its adequacy for studying intermittent short crack growth.

OUTLINE OF THE PROBABILISTIC MODEL

In this section. the outline of the new, probabilistic model is presented. It is described at first
with the highest degree of generality. Specific, illustrative Markov chain models, laws of growth, %
and interpretations of the basic variables are presented in II.

The growth control variable u
The model examines the evolution of a discretized variable, u, (i = ! .. .n), that is governed by

a nonhomogeneous discrete Markov process. The variable u is not the crack length, and this is the
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point at which the present model departs from previous probabilistic models based on Markov
chains[7-10]. Instead, u is to be interpreted as a measure of some local, physical property of the
material that varies stochastically and controls the rate of crack growth at each point. For example,
u might be related to the local flow stress, which governs the crack growth rate by determining
the spatial size and intensity of the plastic zone; or it might be some microstructural length scale,
such as grain size, that determines the magnitude of roughness induced closure. The latter example
is taken up as the illustration of the method in II.

Because u represents a stochastic material property (so that its spatial variation rather than its
variation in time is stochastic), it is convenient and useful on physical grounds to consider its
evolution as an explicit function of crack length rather than elapsed fatigue cycles. This is another
major departure of the new model from previous work[7-10]. The evolution is defined by a
nonconstant sequence of probability transition matrices P!") (m = 0, l1.... ), whose elements are
to be calculated a priori from certain geometrical and probabilistic calculations of the rate of
change of the environment of the crack front. The superscript m refers to the mth value a,, of the
discretized crack length. (The precise meaning of 'crack length' depends on the application. For
example, for a surface-breaking crack it might refer to the surface length, depth, or total area.)
The element P," of P"' is the probability that the discretized variable u has the value u, when the
crack length is a., given that it had the value u, when the crack length was a.- ,. The assumed
Markovian property of the model is that P!" does not depend on the history of the crack prior
to its reaching length a.-,. The calculation of the elements P"') and the reasonableness of the
Markovian assumption will be illustrated in II for a simplistic model of crack growth dominated
by roughness induced closure, and in subsequent work for other kinds of growth. In general. the
calculation of the P ,' may involve certain empirical parameters to be established by comparing
the output of the model with crack growth data.

For computational efficiency, it is important to choose the discrete values of u with some care.
For physical reasons, the second moment pu of u often decreases significantly as the crack length
a increases. In other words, there tends to be less scatter in crack velocity, measured as a fraction
of the average velocity, for longer cracks than for shorter cracks. Therefore, it is often very helpful
to choose a different grid {um,} for each crack length a,,. Furthermore, it is usually advantageous
to choose a nonlinear distribution for each set Ju, f. with a higher density of points near the
average value. Note that these choices, while being directed by physical considerations, are
nevertheless merely questions of numerical methods. For sufficiently dense grids, the output of the
model does not depend on their details.

The choice of the discrete values of the crack length a should also be guided by physical
considerations. For example, the memory that a crack has of its velocity at any particular length
a, may persist for less time (or increase in length) as a, increases. To allow the model to calculate
accurately such persistence of memory will in such cases require {a.} to be a finer mesh at longer
crack lengths than at small lengths. Whether or not the lengths a, can then be chosen arbitrarily
depends on the model available for calculating the transition matrices Pm) . The details of the choice
of {a,,} can usually be made immaterial apart from considerations of computational efficiency. ;

The law of crack growth
The model requires that the rate of growth be specified as a function of the external cyclic stress

amplitude, o, and the growth control variable u. This information is to be provided as a subroutine
that returns the number of cycles 6N required to grow from one crack length, a,, to another, a2 ,
given a value of a and the prevailing value of u. The function 6N(a,, a2, u, a) clearly contains much
of our knowledge of the mechanics of crack growth. Its form can depend very strongly on the type
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of material being modelled, the loading and environmental conditions, and the crack length itself.
6N(a,. a,, u, a) may or may not contain empirical parameters to be evaluated by comparison of
the model's output with growth data. If the mechanisms known to affect growth are believed to
operate exclusively, then any empirical parameter in 5N(al, a2, u, a) can be evaluated at the outset
from deterministic observation of the growth of single cracks. On the other hand, if a robust
treatment is required for a material possessing other, unknown mechanisms influencing growth,
then some parameters can be varied to fit the model against the statistics of growth data taken
under field conditions. In such cases, one still retains the advantage of a model whose form is
optimally constructed to illuminate the known physical significance of trends in the statistics.

Characteristics of the Markor chain

The probabilities t!"' that the growth control variable u has the value u, at crack length a. may
be considered to form a vector (a probability mass function)

(7r" 71 (n . )",, t (m),(I

where M is the number of discrete values of u. It is convenient to make M independent of m, so
that square transition matrices of constant rank can be defined. Then

-1 H (0I Pi. (2)

Given an initial distribution x"°' of u. equation (2) embodies the entire history of its evolution. From
it, one can calculate the mean and moments of u at any length. The mean Eu"' and root mean
square deviation ac't of u at crack length a, are given by

'' "A) U~ki (3)

and

o?' = rr n',k (uI - (Eu k). (4)

A discontinuous cumulative probability distribution for u at length ak is given by

= 5 it(5)

Given a reasonably dense grid {u,'}, a numerically smoothed, continuous analog, P* (u), can
be readily constructed. The latter quantity can be used used to generate the distribution of crack
velocities at the length a*. which information is used in model validation. From equation (2) may
also be calculated the covariance between the values of u at two different lengths. The covariance
will be observed to decay with increasing separation of the two lengths in an approximately
exponential way. This allows the definition of a characteristic correlation length, which is related
to some intrinsic length scale of the material.

The crack velocity da/dN

Since the crack velocity da/dN is a known or postulated function of u, equation (2) may also
be used to calculate the evolution of da/dN. Once again, its distribution, moments, covaria,", and
a correlation length can be deduced. Since da/dN (or, equivalently, a itself) is an experimentally
accessible function of N, these calculated properties can usually be compared directly with data.

FF MS 01--F
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Suppose that there is a deterministic relation

da--= v (a, u) (6)

between the crack velocity (henceforth called v ior brevity) and the damage control variable u. (The
following statements are readily generalized to the case where the connection between u and r is
probabilistic. Such generality is avoided here solely for ease of explanation.) Then the average value
of r at crack length a, is

Et(k) = Xv(a,, u,) -rlkl. (7)

It is useful to define the function

i, (k, k') = E(rk) r(k) = t (a,, u,) v(ak , uj) 71' 7t5 
' 

. (8)

When k = k', the root mean square deviation of r at the crack length a* is given by

- _, (k,V) _ (E, W) Y. (9)

From pj(k, k') can also be constructed the correlation function (or covariance)

p {(r(k, Ec'k ) V)k' - E= j)} = p, (k,k ) - E.k1. E.1

This function must always have a value in the interval [- I, I]. It gives a simple, quantitative
measure of the memory a crack has when it reaches length a, of the velocity it had when it was
of the lesser length ak.. It bears on the fundamental engineering question: if a crack is growing faster
(slower) than average now, for how long will it continue to grow faster (slower) than average.

The correlation function will almost always decay monotonically with increasing la - a, [. It
turns out (although it might not have for a nonhomogeneous Markov chain) that the decay is
generally very nearly exponential in both directions. For given a,., it is useful to define forward
and backward correlation lengths . (k) and . (k) according to

p(k.k) p -o(a, -, &(k) a, > a,

and
(k.V) __(kPr** e-(ak o ,;-* a,. < a,. (I !

These correlation lengths reflect some intrinsic length scale of the material. Further discussion of
them appears in II.

Elapsed fatigue life
The number of cycles elapsed when a crack has reached length a. may be written

_ bNl, (12)

where 6N 0 is the number of cycles taken to go from length a, to length a,. N. may be considered
to be an additive process defined on the underlying Markov chain {P")} describing the evolution
of u, and its distribution can be calculated in principle using integral transformation methods[i 7].
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However, when analytical approximations are unavailable or inappropriate, as is the case here,
integral transform methods pose special difficulties arising from the instability of procedures to
invert the Laplace transform [ 8,19]. Therefore, a different approach is followed here, better suited
to numerical work.

The Markov chain {P"'-} is viewed as embedded in a discrete "time" space. By "time" is meant
elapsed fatigue cycles, not real time, and this should be understood implicitly hereafter wherever
the word "time" is used without quotation marks. It is convenient and appropriate to make the
time grid uniform, and it must be dense relative to physically significant numbers of cycles, a point
that will be taken up again below. Such a model is usually referred to as a discrete-time
semi-Markov process. The solution of it given here is analogous to the systems of recursive
equatie , discussed by Howard[20].

Consider the fundamental question of the length to which a crack has grown after nNs cycles, S
where N, is the number of cycles in each interval of the discrete time space. This length is
determined by the number of transitions made in the evolution of the variable u, since each such
transition corresponds to the growth of the crack from one discrete length to the next. Define

" 1(k In) to be the probability that the control variable acquires the value u~k) upon its kth
transition after exactly nN, cycles, given that it acquired the value u" k upon the k'th transition
at time zero. (By including dependence of ,,J") (k In) upon k', no generality is lost by considering
this k'th transition to have occurred at time zero, or, in other words, considering the dependence
of ,") (k 'n) on an incremental time nN, only.) Define 0 1(n) to be the probability that nN, cycles
elapsed between the (k - l)th and kth transitions of u, given that u went from the value u (' to
the value u()*' The probability mass function h,' (n) is often called a holding time, and it is clearly
derived from the quantity 6N(a,. a,. u, a). If the stress a is a random variable, then its distribution
will be comprised in h,'(n). ho (n) may also depend in a probabilistic rather than deterministic S
way upon the initial value u , - " and final value ukl of u. If the stress a :an take only one value
and 6N(a, a,, u, a) is a deterministic function of u, then h") (n) must represent a delta function.
Since the time space is discrete, it is necessary in this case to spread the mass in h( 1(n) over several
grid points, to avoid computational errors. This imposes an obvious lower bound on the chosen
density of grid points (i.e. the chosen value of N,).

The recursive relation used to evaluate 4". 1(k In) is S

- )6( -k- l)h (k - 1(n) + -o P1'4 O I(k Il m)ho(n - m) (13)

0(")(kIt- In (I(

where

0 ifk' > k
0kl;cIn) =

1,n (n) ifk'=k,
and 6(n) is the Kronecker delta function. All required information concerning elapsed cycles and

crack lengths is constructed from equation (4), together with the initial condition Xr10 .
Consider, for example, some key probabilities and conditional probabilities. Let [N(ak) = n] be

the event that the crack reaches the kth discrete value of length after nNs cycles. Then the
unconditional probability of this event is given by

Prob {N(a,) =n) = 0,)(k In). (14) %
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Let [ak) - u,"] be the event that the growth control variable u has the discrete value u ) when
the crack's length is ak. Then the conditional probability, that [N(ak) = n] given that [u(a,) =- k,
is given by

Prob {N (ak a) u5'} =I u (a'(k In) (15)

In analogous notation.

Prob {N(a) = n ju (a,) -u ,° ) }- ,J (k In); (16)

and

Y- j .0(1(k In )ir10
Prob {N(ak) = nIN(ak )=n'}= In ) X_... i_(1)

X W(k'In') 7r°'

If [a(n) = a] is the event that the crack length after nN, cycles is a,, then

Prob{N(a,)=nla(n')=a }= tI(kIn -i) '(k .i)nt °'. (18)-=I .#r

The last two expressions are particularly important, since they address the problem of predicting
remaining fatigue lifetime given an inspection. If, during the inspection, the damage control
variable u can also be measured, even if with some uncertainty, then this additional condition can
be readily included, and can have a pronounced effect on the predicted remaining lifetime. One
has:

Prob {N(a) = n IN (ak)= n'& u(ak )=u,} = Y 4(k In - n'). (19)

Examples of the application of equations (14)-(19) appear in II.

SPECTRUM LOADING

One of the chief reasons for setting up the models as described above is that the growth rate
law, including its stress dependence, appears explicitly. Therefore, as long as the growth rate la%%
[embodied in hk(n)] is known correctly, the model can be applied immediately to cyclic loads of
any constant amplitude. The treatment of spectral loads is also greatly facilitated, as will be shown
in this section.

The load spectra to be treated can be divided into three broad classes: stochastic loading
(reversals fluctuating in magnitude rapidly compared to measurable increments of crack length);
block loading (blocks of constant amplitude or blocks of stochastic loading); and spectra
containing spike overloads. Stochastic loading may be treated by a simple generalization of the
model for constant loading. For a given set of statistical parameters (mean, variance, etc.) defining
the stochastic loading, the holding times will be no longer deterministic but distributed according
to some density function. If the stochastic load fluctuations rapidly during a growth increment,
and contains no isolated overloads, then load sequence effects will be averaged out, and the
probability mass function h?) (n) is easily calculable.

Block loading requires the creation of a separate Markov chain for each block, convolved
together to form a single model. Suppose the block loading consists of a sequence of blocks of

.. .. . .. • , , e . .. ,r. -" . " ' ." .,. '.%"," € "'."" "',"'€ -. 'Z' t
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length N, cycles and stress level o, (i = 1, 2....). Consider the probability Prob{a(n,) = a, } that a
crack has length a, after n, cycles, where

,= N,. (20)

This may be written in terms of the distribution of lengths at the end of the preceding block:
k

Prob {a(n ) = a,} = Y Prob{a(n)=a0 la(n ,)=ak_} Prob{a(n ,))= a 1}. (21)
I-0

Equation (21) is a recursive relation that requires the conditional probabilities
Prob Ia(n,) = a* Ia (n, ) = aA -} and some initial density Prob{a(0)=ak}. The conditional proba-
bilities are calculated from the analysis of a single block, as described above, and conveniently
stored in an upper triangular matrix. The product of these matrices gives the required distribution
of lengths after j blocks. Such a computation is probably feasible for tens of blocks, which is
adequate for comparison with the usual experimental data. Note that each block may itself consist
of stochastic loading, in the sense of the preceding paragraph, rather than uniform loading.

Spike overloads may be treated by carrying the Markov chain simulation to a certain time (not
crack length). changing the model parameters (e.g. dependence of AN,,(n) upon u, and u ) to
correspond to microscopic understanding of the change induced in the growth laws, and restarting
the model with appropriate convolution over length. This procedure is feasible for only a few
overloads. However, if the overloads are very frequent, then their load sequence effects become
unimportant. and one returns to the case of the rapidly varying stochastic load.

CONCLUSIONS

A probabilistic model has been formulated that draws a direct link between micromechanical
models of short fatigue crack growth and the statistics of measured growth rates. The model has
the structure of an embedded Markov chain or semi-Markov process. The Markov chain describes
the evolution of a damage control variable as an explicit function of crack length. The damage
control variable is open to a variety of interpretations, depending on the mechanisms known to
control growth in any given application. Elapsed fatigue cycles and the distribution of times to
failure are calculated by invoking an empirical or postulated law of growth rate. This law ma,.
and usually does, contain parameters that are evaluated by calibration against available statistical
data. This process guarantees a high level of robustness of the model's predictions.

The model is useful both as a research tool and as a method of making accurate predictions in
engineering field conditions. Its usefulness as a research tool is demonstrated in II, where it is
applied to the analysis of laboratory data for short surface fatigue crack growth in Ti
6AI-2Sn-4Zr-6Mo. It is shown there how model-based analysis of the scatter in growth data can
lead to verification of geometrical aspects of the mechanisms believed to control crack growth at
the microscopic level. The usefulness of the model in predicting remaining lifetime in engineering
field applications has yet to be studied in detail. However, an illustration will be given in II of the
importance of knowledge of the growth control variable, or, equivalently, the instantaneous crack
velocity. Such information can have a dramatic effect on estimates of remaining lifetime.

Although the model is valid for both long and short fatigue cracks, it is with the latter that the
greatest advantages lie over previous statistical models. In most materials, the widest fluctuations
in crack velocity are found in the short crack regime. The mechanisms generating those fluctuations
are varied, and depend strongly on the microstructural geometry of the crack's environment. A

_ . ' " " " ' ' 'N'i ' r,./h:,l " ''" "," ',h'. , ,, , ~ l h. h.,ffi ' -. '. .. . . . ... .. . . .. *" " " , % % " % '" ""% - * % '%" ' ' * ,', '. " "
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model whose formulation reflects the statistics of that geometry has the best chance of reproducing
accurately the statistics of short crack growth. In many circumstances, the period of short crack
growth constitutes most of the entire fatigue lifetime of a material.

On the other hand, if the model is applied to analyzing fluctuations in crack velocity, da/dN,
over very short changes in crack length, a, then, in certain materials, it will fail. In these materials,
visible surface crack tips are observed to be temporarily arrested when they encounter grain
boundaries. If da!dN is recorded as a function of a, it exhibits large variations as the crack crosses
grains, and then falls to zero for some time when the crack reaches a grain boundary. Such a
velocity history cannot be reproduced by a model with the structure of the present one. It requires
explicit separation of propagating and temporarily arrested crack tips[3]. If this is not done, as it
is not in this paper, then it is impossible to describe future propagation of a temporarily arrested
crack. In the formulation of this paper, for example, once a crack has stopped it can never
contribute to failure, because it never reaches the next discrete value of crack length. This is
incorrect, because cracks stopped temporarily can indeed subsequently propagate to failure. To
avoid this difficulty, it is necessary to average crack velocities over gauge lengths of at least one
grain width, so that temporary arrest produces small, but non-zero velocities. It remains an open
question whether such a procedure generates a sufficiently accurate statistical model when grain
boundary blockage occurs.
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Abstract-The frame~kork of a nesw probabilistic model of short fatigue crack growth was laid down in
the preceding paper. In this paper. the model is used to analyze growth rate statistics for surface fatigue
cracks in Ti 6A] 2Sn-4Zr-6Mo. Specific models are proposed for the evolution of the stochastic growth
control variable, which appears subsequently as an independent variable in a parametric law for the
grosth rate Comparison %kith data shows that for cracks oflength 10--250 pm in Ti 6-2-4-6. fluctuations
in the instantaneous rate of propagation of each surface crack tip depend only on the visible surface
microstructure in the tips immediate neighborhood. They are not influenced by the microstructural
environment of the subsurface crack front Furthermore. heN probably depend only on the sizes of at
most the three grains nearest the crack tip. i.e. those within about 30 pm of it.

NOMENCLATIRE

A. . = Parameters in growth lawk
2c = The surface length of a part-through crack
D = The distance between deflections of a crack
£ = Operator indicating expectation 6alue .
P = The cumulative probabilit% distrinbution for u at the k th discrete value of crack length .

AK = Stress intensity range
. = Forward and backward correlation lengths

N = Elapsed fatigue cycles
,' = Number of data pairs (2(. I)

N, = Number of data pairs allocated to bin k (N .N, = .'d %0

n = Number of deflections upon which the instantaneous value of dc dN depends
it"' = Probability mass function for u at the mth discrete value of crack length in the Marko% chain
P'= Probabilit transition matnx for u for the passage from the m-lth to the mth discrete value of crack length

ii the Marko% chain 5
p = Number of bins into which crack velocity data are divided

*AD) = Probability density for D in Model j(j =- I or 2) N
p, = L.ovanance function for dc dN
a = Amplitude of cyclic load .%,p
a. - Root mean square deviation of u
a, = Root mean square deviation of 2dc dN
S = Cramer-von Mises test function P,,
u = Growth control vanable

r(c. u) = Known or postulated relationship between 2dcdN and u
', = Datum value of crack velocity

= Random variable associated with datum pair (2c,, V,)
1) = kth bin of crack velocities ."-'U

cpd = Cumulative probability distribution -

PTM = Probability transition matrix
rmsd = root mean square deviation
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INTRODUCTION

In this paper. information about the mechanisms controlling short crack growth in Ti
6A1-2Sn-4Zr-6Mo is deduced from certain statistics of growth rate data. The statistical analysis
is based upon probabilistic models of the changes in the microstructure encountered by an
advancing crack front. The framework of the analysis was laid down in the preceding paper[l].

Emphasis in the analysis is placed on the information content of the deviance and covariance
of the crack velocity data, and how these statistics depend on crack length. It is assumed that the
stochastic nature of the microstructural environment of the crack is the source of the scatter in
the growth data.

The link between stochastic microstructure and stochastic crack growth has long been widely
acknowledged for cracks whose total size is comparable to the grain size, as is the case here.
However, the statistics of growth data have not been used before to deduce information about the
mechanisms controlling growth. The conventional approach to determining the mechanisms of
short fatigue crack growth is deterministic. The dependence of crack growth on microstructure is
determined by examining individual cracks and the environment through which they propagate in
great detail. Fluctuations in the observed rate of growth of such a crack are directly associated
with known, measurable attributes of either the crack itself (e.g. its opening displacement) or the
surrounding material (e.g. the sizes of the grains near the crack front, or the proximity to the crack
front of grain boundaries).

The end product of such a conventional investigation is usually a record of crack velocity 2dc dN
vs crack length. 2c (or some related variable such as AK). for each of a few individual cracks. Each
significant feature on each of these records corresponds to a specific observation of some detail
of the crack or the surrounding microstructure. It is ut- lerstood. usually tacitly, that the observed
link between the microstructure and the growth rate implies that the latter is stochastic because
the former is.

When a growth la%% is required. it is usuall constructed in terms of the average of d( dN as
a function of c (or AK), and perhaps some average measure of the microstructure. e.g. the average
grain size. Rarely is an account attempted of the micromechanical origins of the magnitude of the
scatter in the observed growth rates, or its dependence on crack length and stress level, or the
covariance between the velocities of a given crack at two different lengths.

In some recently published work, Cox et al. [2]. analyzed certain statistics of short fatigue crack
growth in Al 2219-T851 under constant amplitude loading. In this alloy, cracks stop temporarily
at grain boundaries, and they are strongly influenced by plasticity-induced closure as they
propagate across grains. These phenomena have been described by deterministic laws whose
functional form was established by observations on single cracks [3]. In Ref. [2], these laws were
shown to provide a satisfactory bridge between the measured distribution of grain sizes and several
observed statistics of crack growth. That work also demonstrated a way of verifying quantitatively
the values of certain parameters that were less accurately evaluated by the preceding deterministic
study of individual cracks [3]. However, offsetting these achievements were certain important
limitations. The theory is restricted to surface cracks whose growth is determined solely by the
microstructure visible on the surface. It was developed for the treatment of uniform loading only.
And it is not robust, in that the parameters embedded in it cannot always be calibrated against
growth rate data if the mechanisms controlling growth are very different to those assumed.
including temporary arrest at grain boundaries.

A more flexible probabilistic model has now been proposed in Ref. [1]. There was introduced
the concept of a stochastic growth control variable, u, that evolves according to a finite,

r lie'
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nonhomogeneous, discrete Markov chain. The evolution of u is described explicitly as a function
of crack length rather than elapsed fatigue cycles. This reflects the premise that fluctuations in the
crack growth rate are controlled predominantly by the local material properties sampled by the
crack front rather than factors that depend explicitly on time or the elapsed fatigue history. The
law of crack growth is to be provided as a parametric function of the stress level, the crack length,
and u. The fatigue cycles required to reach a given length are calculated as an additive process
defined on the Markov chain. The reader is referred to Ref. (I] for a full explanation of these
features and the treatment of stochastic loading. The principal advantage of this new model is that
it can remain accurate even if the mechanics of growth in a given material are incompletely
understood.

The data analyzed in this paper consist of records of the visible surface lengths, 2c, of 63
part-through cracks in Ti 6AI-2Sn-4Zr-6Mo taken at a few intervals in the fatigue life [4]. From
these data. values of the crack velocity. 2dc.'dN, are deduced, and the distribution of dcldN is
examined for cracks of all lengths. Specific models are proposed for generating the probabilit)
transition matrices (PTM's) governing the evolution of the growth control variable. u. The ability
of these models to account for the magnitude of the scatter in dcldN and its length dependence
is tested.

This application illustrates the power of the probabilistic model of Ref. [1] as a research tool
when applied to the analysis of laboratory data. At the same time, the calibrated model allows the
most accurate available predictions of engineering quantities such as remaining fatigue lifetime. An
important statistical quantity for such applications is the correlation length, which measures the
rate of decay of the covariance between the velocities of a crack at two different lengths. Predicted
values of the correlation length and the best estimates of experimental values are presented. It is
shown that experimental information about the correlation length discriminates between the
models proposed for the evolution of u. allowing one to deduce the number of grains near each
visible crack tip that influence the instantaneous rate of growth.

THE GROWTH CONTROL VARIABLE. u. IN Ti 6A-2Sn-4Zr-6Mo

In this section, specific models will be proposed to describe the stochastic evolution of a growth
control variable appropriate to short surface cracks in Ti 6A1-2Sn-4Zr-6Mo. These models are
simplistic, but still of sufficient quality to allow the inference of important information from the
available crack growth data. They also serve to illustrate the implementation of the overall
probabilistic model of Ref. (I]. Repeated reference will be made to quantities defined therein. An
introduction to the theory of stochastic processes on which Ref. [1] and this paper are based can
be found in Refs [5] and [6].

The greatest proportion of lifetime in smooth fatigue bars of Ti 6-2-4-6 is spent growing the
fatal crack to a length of 1000pum. Over the range of crack lengths 50-200pm, the dominant
mechanism controlling growth is believed to be roughness-induced closure [4]. With the guidance
of this physical background, probabilistic models were created of a growth control variable, u. that
measures roughness-induced closure. PTM's Pl ) were constructed to describe its evolution. These
were then combined with a law of crack growth rate deduced from laboratory measurements on
individual cracks [4].

In fact, the validity of the procedure used to construct the PTM's does not turn on the
assumption that roughness-induced closure is the dominant factor controlling growth. This
interpretation of the nechanics of crack growth in this particular material is instead used
principally as a motivation for constructing a model of the stated form. It will be seen below that
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other interpretations of the control variable would lead to the same conclusions, because the
control variable simply describes a geometrical characteristic of the material at the crack front. The
relationship between u and the crack velocity is ultimately calibrated against data.

In this application, particular emphasis was given to the question of whether the fluctuations
observed in dc dN for visible surface cracks are associated with one or two dimensional geometrical
aspects of the crack front. Two distinct algorithms for constructing the PTM's were devised, one
assuming that only the geometry of the visible surface grains affects fluctuations in each visible
crack tip's velocity: and the other assuming that the visible crack tips are controlled by an average
of the sizes of the grains along the entire crack front. It will be seen below that only the former
case is consistent with the experimental data.

Geometrical considerations suggest that the local magnitude of roughness-induced closure is
related to the sizes of the grains immediately neighboring the crack tip [7]. In this paper, it is
assumed that this relationship is a simple proportionality. Although this may be a crude
assumption, it is to be remembered that the goal is to describe the rate at which the roughness-
induced closure fluctuates as the crack grows. This stochastic process is not very sensitive to the
details of the relationship in question.

Recall from Ref. [I] that the PTM's refer to propagation of a crack over a discrete set of lengths
{2c. } (m = 1, 2 .... ). (The notation 2c is used for crack length in this paper, instead of a as in Ref.
[I]. because here crack length refers specifically to the surface length of a partial through crack.)
At each length. the damage control variable u is represented by a finite, discrete grid {ju i
(i = I ... , M). which is not necessarily the same at each length 2cm.

Model i-a model using only the risible surface geometrY
In the first algorithm, the growth rate 2dc dN was taken to be governed by the average distance

between the last n deflections (n = 1.2 .... ) of the crack as it is seen on the surface. This average
distance between deflections was then identified with the growth rate control variable, u. The
elements of the PTM's P"1 state the probability of going from one degree of closure to another
when the surface length of the crack increases from 2c, - to 2,'0,.

The discrete lengths 2c, (nI = I ... ) were set so that the interval between successive values equals
the increase in length required for the crack to suffer one more deflection on average. Thus.

2, - 2c =. (I

where D is the average of t1', dist,,:>. .9 between deflections. In fact. D is a random variable.
distributed according to a measurable density 0,(D). Treating u for the moment as a continuous
variable, if it had the value ul- at length 2ck_ . and the next deflection occurs after an interval
D, then the new value of u may be approximated by

u(k) = (n - I)u(k- )+ D (2)
n

For the discrete variables ul* -- ' and u5*, the corresponding element P(*) was then calculated by
asking what probability there is that the value of D in equation (2) will be such that, if u(k - " falls
between (uk - ) + u,'- '))/2 and (u(k - ) + uk- '))/2, then u(0 ) falls between (ut! I + Uk))/2 and
(u k, + Ul, +)/2. This was calculated by invoking the empirical density 0,(D).

To measure the density 0,(D), straight lines were drawn on a micrograph of the Ti 6-2-4-6
specimen. The distribution of intervals on the lines that were demarked by the grain boundaries
of both the a and ft phases was then counted. The resulting cumulative probability distribution
(cpd) is bimodal, because the fP phase grains are much bigger than the or phase grains (see the

Mo.l
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stepped curve of Fig. 1). It was represented by a smoothed, numerically defined function, which
is also shown in Fig. 1. Note that as , (D) is defined, the crack is assumed to be deflected at all
grain boundaries, whether they be between two a phase grains, two fP phase grains, or one grain
of each phase. In Model 2, a slightly different assumption will be made, in the interests of getting
the most stringest assessment possible of the relative merits of the two models.

Note that the heuristic arguments leading to equation (2), including the relationship equation
(I), are unaffected by the fact that 2dc/dN is the sum of the speeds of two visible crack tips, not
just the speed of one. In counting the frequency of deflections. the model is the same whether one
counts deflections suffered by one tip when the other is fixed, or by both tips propagating together.
The averaging over n deflections might be carried out equally over the neighborhood of one tip
or over the neighborhoods of each of a pair of tips. In the latter case, the last n deflections suffered
by the crack comprise. on average, the last n,'2 deflections suffered by each of its tips. Thus, if the
net velocity of a pair of tips is being modelled (as for the data analyzed below), then n ought to
be divided equally between the two tips: in other words, each tip is influenced by the nearest n/2
grains.

Model 2-a model that averages over the entire crack front

A different point of view. which can be neither preferred nor dismissed a priori, is that the visible
crack tips advance with fluctuations that depend on geometrical roughness factors averaged along
the entire. approximately semicircular crack front (see Fig. 2). For this case, the discrete lengths
2c,, (m = 1. 2 .... ) were set so that the intervals between them equal the increase in length required
for the crack front to envelop one more grain of average area: i.e.

it((2cA )- - (2ck - )2) =/D-, (3)

where now the random variable D refers to the width of a grain. To give Model 2 the best chance
of reproducing the statistics of the data, the relevant widths were taken to be those of the P phase
grains only. In other words, the crack was assumed to be deflected at the edges of the/f phase grains
only. This assumption maximizes the deviance predicted for dc 'dN at any crack length, but it will
be seen to be still irreconcilably less than that observed. The distribution 02(D) of the random
variable D in Model 2 was taken to be a Weibull distribution of mode D = 30pm and half-width

1.c

0.6-

0.4-

0.2 N

0 10 20 30 40 s0
0 (Jafl,

Fig. L The cumulative probability distribution used in Model I for the distance between successive crack
deflections in the Ti 6-2-4-6 specimen.

p ,., p 3 3 3 , - -fee,
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Fig. 2. A schematic illustration of the interaction of the front of a surface breaking crack with a stochastic
microstructure.

40 pm (the upper arm of the cpd in Fig. 1). Because the features of the model being tested are not
sensitive to the higher moments of 02(D). this estimate of it is quite adequate. Equation (2) was
thus replaced by

(ki 2tc. - + D (4)U 27ECk 1 (4

In this expression, the numerator approximates the length of the crack front when the grain of

diameter D is incorporated. The denominator is proportional to the new number of grains along

the crack front. Thus, u'1 refers to the average diameter of the grains lying on the crack front itself.
It excludes grains lying in the crack's wake (see Fig. 2), a possibility allowed in Model I. This again

maximizes the deviance of u, and, therefore, the predicted scatter in dc/dN. The elements P were

found from equation (4) in the way prescribed after equation (2).
The above algorithms for evaluating the PTM's P'" are obviously crude, but they generate

models that reproduce many of the observed statistics of short crack growth in Ti 6 -2-4-6. Model

24

20

12

.0
8

0 40 S0 120 160 200 240
2c (tIm)

Fig. 3. Monte Carlo simulations of the evolution of u according to Model I (n - 3).
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Fig. 4. (a) The grid used for the damage control variable u in Model 2 (b) Monte Carlo simulations of
the evolution of u according to Model 2.

2 allows, albeit in an unrigorous and heuristic way. the important possibility that the crack's
memory of its rate of growth may become shorter as the crack grows longer. This could, of course.
be deduced from the crack data themselves, by calculating the appropriate correlation lengths. But
what has been achieved is the association of such observations with physical causes. This enhances
the prospects of making accurate probabilistic predictions for load sequences and materials for
which only sparse statistical data or no data at all are available.

Evolution of the growth control variable u

The discrete grid used for the variable u in Model I was independent of crack length. The grid
used in Model 2 is illustrated in Fig. 4(a). In Figs 3 and 4(b) are presented sets of member functions
(simulated histories of u for individual cracks) generated by Monte Carlo calculations. The initial
value of u was set equal to the size of a single grain, chosen randomly according to the empirical
density 4(D) or 4O(D). Subsequent values of u were found with weight given by the PTM's P"".
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Fig. 5. Cumulative probability distributions for u in (a) Model I (n 3) and (b) Model 2.

The discreteness of the grids in both crack length 2c and growth control variable u is apparent in
these figures, but it can be proven to have an acceptably small influence on the predictions of the
models.

The Monte Carlo calculations are easily made, illustrate basic trends quickly. and can be used
to verify subsequent probabilistic calculations. However, they are not themselves an adequate
solution, principally because they are an extremely inefficient way of calculating conditional
probabilities such as those in equations (15H19) of Ref. [I1. To calculate conditional probabilities.
one must sift out only those member functions for which the condition is satisfied. If the condition
is a rare event, as may be expected to be the case with the fatal flaw in an engineering application.
then a huge number of member functions must be calculated before good enough statistics are
obtained.

Superimposed on Figs 3 and 4(b) are the average value EuIkI of u and Eu(k)+ o", where Co 1' is
the root mean square deviation (rmsd) of u calculated at crack length 2c, according to Eqs. (3)
and (4) of Ref. [1]. In Fig. 5, continuous cpd's of u are shown, calculated from the discontinuous
cpd given by equation (5) of Ref. [1]. For Model I [Fig. 5(a)], the cpd is representative of any crack
length, 2c (after a brief, unimportant transient region, 2c < 20 pm), because this model is
homogeneous. For Model 2, the cpd for u becomes progressively narrower with increasing crack
length. It is shown in Fig. 5(b) for equally spaced crack lengths lying between 15 and 134 pm, as
marked. Note that the cpd's for u at all crack lengths constitute a useful summary of the stochastic
model proposed for whatever mechanism is believed to control the growth rate, dc/dn. When
combined with a law relating dcidn to u, they lead immediately to cpd's for dc/dn. In the present
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AD
TABLE 1

VISIBLE CRACK LENGTHS 2c ianm IN Ti 6-2-4-0 AFTER VARIOUS NUMBERS OF
CYCLES OF FULLY REVERSED CYCLIC LOADING AT :t700 MPa

CRACK SOOC BOOC 0500 1lOC 12500 CRACK S000 8000 3600 11000 12100
NUMIR CYCLES CYCLES CYCLES CYCLES CYCLES NUMIER CYCLES CYCT. CYCLES CYCLES CYCLES

1 25 65 92 140 200 33 58 68 111 128
2 50 72 108 161 34 24 33 36 49 52
3 35 66 1i1 156 35 27 39
4 29 50 89 114 36 46 98 115 158 200
5 19 46 55 80 37 48 88 148 191 251
6 23 42 64 88 138 38 25 26 47 61
7 29 45 75 110 39 16 20 21 25
8 17 19 25 40 40 13 26
9 28 53 75 100 41 26 3E 43 53 65
10 58 81 42 21 32 44 69 S
11 20 39 57 82 107 43 22 31 44 64 71
12 16 16 17 19 44 25 47 62 86 101
13 21 26 27 29 38 45 35 40 ,I
14 31 62 102 149 210 46 18 32 41 69 78
15 24 41 69 98 S 47 16 21 32 S
16 34 45 55 S 48 21 22 28
17 40 58 60 S 49 22 24 28 39 s0
18 23 38 53 70 S 50 33 38 60
19 32 105 170 237 C 51 20 26 26 42 53
20 22 49 70 S 52 21 40
21 30 45 73 S 63 25 25 25 29 37
22 21 44 75 111 S 54 21 37 52 75 109
23 25 43 75 128 S 55 23 23 28 36
24 17 38 64 140 C 56 33 38
25 33 51 67 S 57 18 25
26 10 21 33 44 52 58 23 23
27 32 s0 63 S 59 59 87
28 21 69 116 183 C 60 23 25
29 27 48 66 S &1 46 65
30 53 67 62 27 34
31 12 14 16 19 63 42 59
32 49 68 73 95

S NOICATES THAT A CRACK HAS BECOW, SHADOWED BY ANOTHER SO THAT T 0 LONGER
EXPERIENCES THE APPLIED LOAD

C 10CATES THAT A CRACK HAS COALESCED WITH ANOTHER

application, the model validation consists of optimizing this law. which is done in the following
section.

ANAlINSIS OF THE Ti 6-2-4- DATA

For the present investigation, the original data [8]. which had beer gathered by experimental
methods described in Ref. [4]. were analyzed afresh The data used are shown in Table 1. TheN
consist of the surface lengths of 63 cracks measured on the same Ti 6-2-4-6 specimen (yield
strength. 1140 MPa, Young's modulus. 140 GPa) at the stated intervals in the fatigue life. The
original experiment was conducted with a polished cantilever specimen loaded in flexure. The
observed cracks were initiated naturally and grown at + 700 MPa. The lengths were measured by
direct optical microscopy. The measurements were made when the specimen was loaded, to
minimize any part of the crack that might be overlooked for not being open. The lengths are
probably accurate to within a micron or so. For some cracks, poor definition of the crack tip might
allow an error of several microns.

To simplify model validation, the data were reduced to the form shown in Fig. 6. The values
of 2d-/dN plotted there were obtained by simply dividing a measured increment in length by the
corresponding increment in elapsed cycles. The result of each such calculation was associated with
the average crack length between the first and second ineasurements. Since the cracks usually grew
tens of microns between measurements, the errors in average velocity arising from errors in length
are usually small. The scatter observed in crack velocities is caused by fluctuations in the material.



438 B. N. Cox and W. L Molitis

2(a) 6.102 1T

5- .

0 40 80 120 160 200 240 0 40 s0 120 160 200 240

Fig 6. The crack growth data of Ref. 18] for Ti 6-2-4-6. The three curves represent the velocitN
correspondingto thea~erage %aluc ofuand t~o boundsthat shouldencompass 70% of the data calculated

using (a .Model I = 3 and (b) Model 2.

No provision was made in the data analysis for any quasi-static change in average material
properties during fatigue. The number of elapsed cycles in the neighborhood of which a pair (2c,
2dc dA*) had been calculated was dropped from further consideration. This is equivalent to
assuming that dc dN may be a function of crack length and the control variable u, but not of
elapsed cycles N directly. This assumption follows tho earlier nonprobabilistic study of Ti 6-2-4-6
141. In later applications of the probabilistic model of Ref. [I], the generalization that dcA:N might
depend explicitly on N will be considered.

Model .alidation-the distribution of relocit'.

In the present example of short crack growth in Ti 6-2-4-6. where the dominant closure source
is fracture surface roughness, the form of the la of crack growth is [4]

dc -

2 dN_= (c. u) = A[214+ 1.2 a 2cf(5

ung (a oe 51t=3 n b)Mdl2

where A is conveniently expressed in amncycle u is the growth control variable appearing as a
continuous variable; and .is the applied fully-reversed cyclic load amplitude. In the original
derivation of this law, the variable u represented the measured crack opening displacement at zero
load. The law was established by fitting crack opening data for a moderately large number of
individual cracks growing through grains whose sizes were individually measured and recorded.
In fact, the measured CTOD's [4] have an approximately constant average for cracks of
length e 100em, but fall away for shorter cracks, and must vanish at zero crack length. Since the
velocity data continue to show considerable scatter (see Fig. 6) for even the shortest cracks, it may
well be that fracture surface roughness is not the only growth control mechanism, especially for
cracks of lengthly 50 pm. However, since only the shortest cracks would be strongly affected.
equation (5) as it stands will suffice here.

The variable u is, of course, a random variable, whose distribution at any crack length is given
by equation (5) of Ref. [1]. That equation defines the cpd Fopen(uin) in terms of the discrete variables
u* defined at crack length 2cg For the following model validation, Purjc), a cpd for the
continuous variable u at any crack length 2c, was generated by a numerical smoothing algorithm
and interpolation over (2c,). (u c) is determined almost entirely by the PTM's P", which in

The aribleu i, o cousea rndo vaiabe, wosedisribtio atany rac legthis ive
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the present application are prescribed by Model I or Model 2. It is not strongly influenced by the -
assumed initial distribution nt '. (General note: in other applications, this may not always be the
case.) Equation (5) may be regarded as a deterministic, one-to-one relationship between u and t
at fixed crack length. 2c. It possesses the inverse relationship

u = u(r. c). (6)

which expresses u as a strictly monotonically decreasing function of v. The cpd for crack velocities.
F.(r Ic). may therefore be written

F(tc)= 1 -10 (U (r.c)1c). (7)

The validation procedure consists of finding the parameters A, fP, and a in equation (5) that cause
P,.(z Ic) to resemble most closely the experimental distributions of 2dc/dN at all crack lengths given
the model-based distributions Pk(u ic).

There are various ways this optimization task can be carried out. In this work. a modification
of a method considered by Fertig [9] was employed. Given values of the parameters A. fl, and 3.
equation (6) implies a value, u,, of the growth control variable for each experimental data pair
(2c,. V,). Let there be N, such data pairs and implied values u,. With each value u, may be associated
the random variable

= F(u, 1, (8)

For a valid modei and an infinite data set. v, must be uniformly distributed over the interval [0, I].
The optimum values of the parameters A. fl, and 2 may be found in principle by minimizing the

Cramer-von Mises test function
S = - (9)

with the Y, previously sorted into ascending order. For the given, finite data set, a modification
of this procedure was used to avoid finding spurious, local minima of S(A. fl. a) with the available
minimization algorithm. The data {(2c,. i) were divided amongst p equal subsets, fl. in such
a way that

2c,<2c, if iec-, jcfl,. and k<k". (10) .

TABLE 2
OPTIMAL PARAMETERS, A. P. AND o AND CORRELATION

LENGTH A- FOR VARIANTS OF MODEL I

A 1 A.
(SEE NOTE 11 tw /CYCLEI x 1 03 ISEE NOTE 21 y(M)

1 0.540 2.02 0.359 < 10

3 0562 2.05 0.304 14

10 0.51 2.16 0.377 s0

NOTE 1: THE INSTANTANEOUS VALUE OF dc/dN IS ASSUMED TO SE
CONTROLLED BY THE AVERAGE OF THE DISTANCES
BETWEEN THE LAST n DEFLECTIONS SUFFERED BY THE
VISIBLE SURFACE CRACK

NOTE 2: THE VALUES GIVEN FOR . ARE OBTAINED WHEN u IS
EXPRESSED IN pm AND OMAXV!M IN Mpg.-.

1 2 
IN EQ t5t.

", " % ' • ' "" % % % i ' • ' " 
%
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The corresponding y, of equation (8) were ordered within each subset, and the minimization was
carried out for the sum

S=Y - N+I i ' 011)

where NA, is the number of data points in Q. The resulting values of A, Pi, and , were found to
be essentially independent of p for 2 < p < 5.

The results of the procedure for optimization are summarized for Model I in Table 2. The three
cases n = 1, 3. and 10 are shown. There are some differences in the corresponding parameters A,
P, and o, but not enough to distinguish between the merits of the three cases. In Fig. 6(a). the three
functions, r(c, Eu). r(c. u *), and r(c, u-) , have been superimposed (solid lines) on the data for
the case n = 3. u - are the values of u defined by

P,(u 1c) = 0.85
and

(u- Ic) = 0.15, (12)

so that the outer curves should contain 7 0% of the data points. The equivalent curves for n = I
and n = 10 show no significant differences to the case n = 3. One cannot discriminate between the
merits of these three cases by their ability to reproduce the average scatter 2dc/dN.

On the other hand. Model 2 is clearly incorrect. In Fig. 6(b). the same curves. t(c. Eu). r(c. u ).
and '(c. u -) are plotted against the data using the optimized parameters of Model 2 and the
corresponding distributions P. .While the predicted average growth is acceptable, given the thinness
of !he data at lengths > 100 tm. the scatter in 2de 'dN is clearly not reproduced. To highlight this
failure, the rmsd found experimentally in 2dc/dN has been compared in Fig. 7 with the rmsd
calculated according to Model I (n = 3) and Model 2. The experimental values were estimated as
follows. The data (2c,, V) were grouped into ten bins b, centered around lengths 2,. The rm~d

or [I(C; ] (13)<r,(c;c, = u")

3-10 2 T

2 ' ,-

Model I In-3

40 so 120 160 200 240

Fig. 7. Irregular curve: the rmsd of the velocity data of Fig, 5, calculated according to equation (13)
Smooth curves: the rmsd of the crack velocity calculated using Model I (n = 3) or Model 2, as marked
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Fig. 8. An example of the covariance function p, (2c, 2c')-

was then evaluated, with the sum being restricted to the data for which 2c, falls in b1, which is
satisfied for N, points. Note that the predicted rmsd's for n = I and n = 10 in Model I are virtually
the same as that shown for n = 3.

Inspection of the data shown in Fig. 6 suggests that a threshold for growth may exist for cracks
less than 10 pm at the stress level used in the experiment. The data for dc/dN perhaps tend to zero
to the right of the origin, even though the shortest cracks observed were still propagating. This
possibility was investigated by subtracting a constant threshold stress intensity factor from the
bracketed terms on the right hand side of equation (5). The velocity '(c, u) was then set to zero
if the sum of the bracketed terms was negative. It was found that the average velocity dipped as
expected for 2c < 20 pm, without any conclusive effect on the measure S[equation (11)] of the
goodness of fit. All other conclusions in this paper were unaffected by this small threshold. %

Corariance and correlation lengths
The covariance function p, (k, k') (defined by equation (10) of Ref. [1]. with 2c replacing a) gives I

a simple, quantitative measure of the memory a crack has when it reaches length 2c, of the velocity

30-7 .

104

30 0I .
Model 2 ,

0IRO0EREN0e 100-zo

REFERENC CRACK LENGTH 144m1 41

Fig. 9. The forward correlation length . as a function of the reference length, for Model I (n = 3), Model
2, and from experimental data, as marked. ,

I
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it had (or will have) at length 2c, . Given the optimum values of the parameters A, fi. and a in
the growth law equation (5), p, (k, k') has been calculated as a function of 2 ck, with 2c, held
constant at various values. An example of one of these calculations, for 2 ck = 133 pm. is shown
in Fig. 8 (solid line). It is superimposed on the analogous quantity calculated from 100 Monte Carlo
simulations (dashed line). The covariance shows the expected. approximately exponential decay in
both directions with increasing 12c. - 2cA 1. This decay may be well characterized by the correlation
lengths /A and ,0.- defined by equation (11) of Ref. [1].

From its definition in equation (2). it is evident that Model 1 is homogeneous: the PTM's do
not depend on crack length. 2c. It follows that. in Model 1. the correlation lengths . - and ; . are
asymptotically constant and equal as 2c increases, following an initial transient region that depends
on the initial distribution at"' assumed for u. The constant value they tend to depends strongly on
n in equation (2). If n = 1. inspection of equation (2) shows that the values of u, and hence of .6
dc dN. at successive crack lengths 2c, and 2c, ., are uncorrelated, i.e. p,(c, ck) = 0 when k # k'.
For n _ 2. - and ;. increase approximately linearly with n. Some representative values appear
in Table 2. The strong dependence of ;. z upon n opens the possibility that the optimum value of
n can be deduced from comparison with correlation lengths calculated from the experimental data.

The correlation lengths /. and / - predicted from Model 2 depend on crack length. Numerical
calculations shot that they are approximately equal and decay monotonically with increasing 2(.
Although Model 2 has been discounted because of its inability to reproduce the scatter in dc dN.
, . is shown in Fig. 9 as a function of crack length to exemplify a feature of a nonhomogeneous
Markov process.

The experimental counterpart of p, (k. k '). the covariance of the velocities of an observed crack
at two different lengths. was analyzed as follows. With the same definitions of grid points 2c, and
bins b, that were used in equation (131. the experimental covariance was calculated from the data
as

1 n h h" I rl v(c .I i- (f1)1[ 1 V - (C,. i4(c )] '
P, , [ q(p. q). (14.

The function q takes the value unity if the observations p and q were of the same crack. and zero
otherwise. and n = I for N, pairs (p. q .In calculating the denominator of equation (141. only data S
contributing to the numerator are to he used. The correlation lengths .-(c;) and ;. (c) may be
deduced from p, (c,. c;) by fitting an exponential function to the values obtained when c" is held
constant and c; is varied. The fitted exponential function has the form

p, (c;. c; ) = e -  ' - 2',: '" (15)

The quality of this calculation of experimental values for A -± is limited by the number of data
points (2c,. V',) available for each crack and the total number of cracks observed. In the data set
considered here, there are insufficient data for 2c, > 100jpm to make a reliable estimate of . - in V
that regime. The values deduced for ;. : are also affected strongly by the frequency at which %
measurements of 2c, and elapsed cycles are made. Table 1 shows that cracks had generally grown
at least 10 pm between measurements if they were relatively short (2c < 100 pm), and at least
30,pm if they were relatively long (2c > 100 pm). These minimum intervals of growth are clearly
lower bounds to the deducible correlation lengths. In other words, equation (14) must give a
correlation length of at least 10pm for 2c < 100pm, even if the true correlation length of the
underlying control variable u is less than that. The only way to decide whether that might be the
case is to make measurements more frequently.

With these limitations acknowledged. experimental values for were calculated according to

V
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equations (14) and (I5), and are presented in Fig. 9. Because few observations were available for
the same crack over more than two or three bins. the fitting of the function in equation (15) was
restricted to the first one or two bins adjacent to the reference bin. The first four experimental values
for A. (for 2c < 100pm) should be considered accurate to within 20,pm. The results for
2c > 100 pm may be considerably more in error. Note especially that the latter are not accurate
enough to imply an upward trend in .'.

In spite of these uncertainties, it is still possible to draw at least a weak conclusion about the
relative merits of the cases n = 1, 3. and 10 in Model 1. The case n = 3 generates a correlation length "
S- of about 14 pm (Table 2 and Fig. 9). which is consistent with the experimental values. The case
n = 10 generates a correlation length ; ,-- 60 p m. which is inconsistent with experiment. The case
n = I generates /' - < 10pm, but this cannot be ruled out because of the lower bound to the
experimental . - enforced by the frequency of the original measurements. In summary, it can be
concluded that agreement is obtained when n < 5. In other words, fluctuations in the instantaneous
value of dcdN are controlled by the average size of at most the three (n12) grains nearest to each
crack tip.

CALCULATION OF REMAINING LIFETIME

In this section. examples are presented of the calculation of remaining fatigue lifetime, using the
calibrated Model I (n = 3).

The probability ... t a crack will grow to a given length after some number of fatigue cycles is
illustrated for several lengths in Fig. 10(a). These calculations (following equation (14) of Ref. [I])
are of the cycles to grow to a given length, given that the crack had the length 2c, at time zero.
Therefore, the distributions shown are of times of propagation. These are not necessarily the total
elapsed cycles, since there may be a significant number of cycles required to generate a crack of
length 2c0. This initiation phase has not been considered here.

The conditional probability, that a crack will reach length 2c, after N cycles given that it reached
length 2c after N' cycles, is more significant. because it does not depend on the value 2c, of the
first discrete crack length. It is shown in Fig. 10(b) (calculated according to equation (17) of Ref.
[1]) for the case 2c, = 100 pm. 2c = 200 pm. and various values of N'. Note that. in this case. where
2 c, - 2c; >> ' - and the Markov process is homogeneous. there is very little dependence of N - N
on N'. The four densities shown very nearly coincide if the origin for each is shifted tc V . This
is not the case if additional information is available at 2c . namely the value there of the growth
control variable, or. equivalently, the instantaneous velocity 2dc/dN. Figure 10(c) shows the
probability that a crack will reach length 2c, after N cycles given that it reached length 2c; after
N' cycles and had the value u, of u. The number N - N' of additional cycles to failure depends
strongly on the conditional value u,. This effect can be very important in calculating remaining
lifetime given an NDE measurement that enables estimation of u.

',.

DISCUSSION

The models for the growth cortrol variable u were chosen to be consistent with earlier work [41
that had suggested that, for this range of crack lengths, roughness-induced closure is the dominant
source of fluctuations in the growth rate, 2dc/dN. However, since u measures a geometrical aspect
of the material, viz., the average size of grains near the crack front, the models have much broader
applicability. For example, it is known that, in certain aluminum alloys, fluctuations in dc /dN are
dominated by local plasticity, and the local plasticity in each grain depends very strongly on its
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size [10]. Models similar to Models I and 2, with u reinterpreted as a measure of plastic strain.
might well be appropriate for such materials. The differences in the models for the evolution of
u for that application and the present application would be mainly semantic. However, a growth
law [equation (5)] of different form would probably be appropriate for the calibration of the model
against data.

For Ti 6-2-4-6. the best model found for the evolution of the damage control variable, u. was
homogeneous (Model I), i.e. the PTM's P""' were independent of crack length. There are many
materials for which short crack growth will not be described so simply. In general, there will be
a transition at some length from very small cracks whose velocity is determined by material
properties along the entire crack front (as in Model 2) to larger cracks whose surface velocity S
fluctuates according to Model I. In the Ti 6-2-4-6 data analysed here, this transition has evidently
already occurred before the velocity data become significant, i.e. at some length less than 50 pm,
the equivalent of just a few grains. In the very small crack regime, the correlation length might
be expected to decrease with crack length. as it does in Model 2.

On the other hand. when fluctuations in the growth rate are dominated by meanderings in the
crack front or by the aspect ratio of a semielliptic crack, the correlation length might increase with
crack length. The effective stress intensity factor a'eraged over the crack front depends on the
details of the crack shape [11- 14]. Fluctuations in AK will persist as long as fluctuations in the crack
shape persist. If the fluctuations in shape scale with the crack size, rather than some characteristic
material length. then fluctuations in K will persist longer for larger cracks. To examine such
possibilities, it is essential that nonhomogeneous Marko\ processes (e.g. Model 2) can be treated.
This is an important feature of the approach presented in Ref. [1].

For the Ti 6-2-4-6 specimens considered here, such shape effects were not evident over the range
of lengths in which the data fall. Crack planes were exposed b) brittle fracture at liquid nitrogen
temperature. leaving the fatigue crack front distinctly outlined. The fatigue cracks were all observed
to be approximately semielliptical. with an aspect ratio of - 0.4. Departures of the crack front from
a simple, smooth curve will be more pronounced when the crack is smaller relative to the grain
size. or if other inhomogeneities of larger period remain from manufacture.

The conclusions reached do not depend strongly on the correctness of the deterministic law.
equation (5). derived in previous work [4] and used here to relate dc dn to u. Of course, if this
law had taken a different functional form, then different optimal values of the parameters A. /3.
and o (or their substitutes) would have been deduced. But various parametric laws could have been
concocted that would have accounted equally well for the observed statistics. The literature
abounds with demonstrations that it is possible to fit in various ways the average of dc/dN, which
is the quantity usually reported. However, physically unrealistic functions of u [e.g. raising u to
a power very different from unity inside the brackets in equation (5)] would be eliminated by their
inability to reproduce the higher moments of the distribution of dc/dN at each value of 2c. The
statistical test given in equation (9) is a convenient, quantitative measure of the success of any '

model in this regard.

CONCLUSIONS

The model-based statistical analysis of the data for Ti 6-2-4-6 over the range of surface crack
lengths 10-250 pm has shown that:

(I) In the regime studied, fluctuations in the instantaneous velocity of the visible crack tips depend
only on the geometry of the visible, surface microstructure; and
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(2) Fluctuations in the instantaneous velocity are probably influenced by at most the three grains

nearest each crack tip, or those within - 30jum of it.

These conclusions demonstrate the value of analyzing the statistics of growth rate data as a way
of inferring micromechanical information and checking the validity of micromechanical models.
This potentially fruitful approach has been generally ignored in the past, even when statistically
significant data have been available. The model presented in Ref. [I] provides a powerful, flexible
vehicle for such studies.

The fact that the model is only weakly dependent on the correctness of the rationale used to
derive it guarantees robustness of any ensuing statistical predictions. This is the key to the model's
potentially accurate performance as a method of predicting remaining lifetime in an engineering
environment. Indeed, this was originally intended to be and remains the model's primary function. A
In this paper, the calibration of the model against growth rate data has been demonstrated. The
relationship between dc/dN and u becomes fully defined by the optimization of the parameters in
it. The conditional probabilities concerning remaining lifetime that were defined in Ref. [I] can then
be computed easily and economically. Examples have been presented of the kinds of output
available.
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THE STATISTICS OF THE SHAPE OF SMALL FATIGUE CRACKS

B.N. Cox* and W.L. Morris*

This paper presents Monte Carlo simulations of the
growth of small fatigue cracks through stochastic
microstructures. The simulations are based on can-
onical formulae for the stress intensity factor
around an irregular crack front, and laws of crack
growth extracted from prior experiments or theories
to describe the influence of the microstructural
environment. The simulations allow the convenient
examination or the statistics of crack shape, which
may be compared with easily obtained experimental
data. The magnitude and persistence of fluctua-
tions in crack shape may be used to test postulated
laws of growth. The physical insight available
from the Monte Carlo simulations will ultimately
permit more accurate predictions of fatigue
lifetime.

INTRODUCTION

Small fatigue cracks having no dimension greater than a few grain
diameters are subject to large stochastic variations in the driv-
ing force acting at different points along the crack front.
Therefore, the crack front does not remain smooth, but shows ir-
regularities which may be large or small depending on the strength
of the stochastic factors generating them. In this paper, Monte
Carlo simulations of the growth of such irregular cracks are pre-
sented. The Monte Carlo simulations can be used to validate pos-
tulated laws of crack growth by comparison with observations of
crack shape; and to illuminate the sources of various statistical
properties of small cracks, which may allow more accurate
predictions of fatigue lifetime.

For small cracks, the stochastic variations in the driving
force originate in the stochastic nature of the microstructure
encountered by the advancing crack front. The rate of advance of
a segment of the crack front can be influenced by several mechan-

*Rockwell International Science Center, 1049 Camino Dos Rios,

Thousand Oaks, CA 91360
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isms whose impact depends on the size, orientation, and mechanical
properties of the grains in the immediate vicinity. The mechan-
isms include temporary arrest at grain boundaries, deceleration
caused by back stress or by fracture surface roughness, accelera-
tion caused by enhanced local plasticity, and fluctuations in the
local stress field caused by elastic inhomogeneity and anisotropy.
The Monte Carlo simulations allow the consideration of one or all
of these mechanisms, as long as a corresponding law is available
to express their influence on the growth rate of each segment of

the crack front.

The tendency of the stochastic microstructure to make the
crack front irregular is balanced by the dependence of the stress
intensity factor on crack shape. For example, for an embedded
irregular plane crack, the mode I stress intensity factor, KI , is
generally reduced on protrusions and enhanced on retarded seg-
ments, so that, in the absence of microstructural fluctuations,
the crack always tends to be circular. For a surface breaking
crack under mode I loading, the equilibrium shape is approximately
a smooth semi-ellipse of aspect ratio 0.4. For the Monte Carlo
simulations, a simple algorithm has been derived to estimate KI

for either an embedded or surface breaking plane crack of any
shape.

STOCHASTIC MICROSTRUCTURES

A single instance of a stochastic microstructure is generated as
follows. Nucleation sites of a prescribed average density are
placed on the plane of the crack in a Poisson process (i.e., with
no correlation in their locations) by invoking a pseudo-random
number generator. The grain boundaries are then determined by the
Wigner-Seitz construction, which defines each grain as the area
bounded by the perpendicular bisectors of the lines joining that
grain's nucleation site to the nucleation sites of all its con-
tiguous neighbors. Nonequiaxed grain structures are generated by
rescaling one of the axes. The locations of the vertices and the
total area of each grain are stored until the next microstructure
is generated.

To enable convenient reference to the information contained in
a given microstructure, a discrete square grid is defined on the
plane of the crack. Each point on this grid is then associated

with the number of the grain containing it and with other measures
of the local microstructure. For example, for modeling crack
growth in Al alloys, an appropriate measure upon which plasticity-
induced closure depends is the distance from the grid point to the
next grain boundary measured along the line emanating from the

center of the crack. Other characteristics, such as grain
orientation, might be preferred for other materials.
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APPROXIMATE. FAST ALGORITHM FOR K1

The feasibility of the Monte Carlo simulations depends critically
on being able to estimate K, very quickly for plane cracks of
arbitrary shape. Exact calculation of K, would be prohibitively
slow and, therefore, simple approximations to KI have been
derived. The approximations are based on estimates, KI(P), of K I

at the zenith, P, of a protrusion and KI(Q) at the nadir, Q, of a
retarded segment. Both the protrusion and the retarded segment
considered have the square-shouldered geometry shown in Figure 1.
A combination of analytical and numerical work has led to the

following expressions for KI(P) and KI(Q):

K1 (P) 2 2 - ,_tan an 3 (1)

and

K (Q) 2o/s1 / tan- i+st tan I(2)
II- S/t 2(2

where s, t and o are defined in Figure 1. The identification of
for a smooth rather than square-shouldered protrusion or retarded
region is subjective and, therefore, the term o/2 in Equations (1)

and (2) was replaced by v/2-a/a with the parameter ao evaluated
by calibration against KI for eliiptical cracks.

For crack fronts of arbitrary profile, the half-width a of a
protrusion or retarded segment was defined as half the angle

between the points on either side of the extrema at which the
radius of the crack was equal to its average radius (Figure 2a).
The value of K, between the zenith of a protrusion and the nadir
of a retarded segment is then written simply as

Ki(e) = I(r(e) - s)KI(P) + (t - r(e))Ki(Q)]/(t - s) , (3)

where r(e) is the radius of any point and s and t are defined in
Figure 2a. The exact results for an elliptical crack with s t
can be fitted perfectly by Equation (3) by adjusting a0. With
this value of on (vi2., ao = 0.201) retained for all cases, the
agreement with other known solutions is as illustrated in Figure
3. Even for protrusions and retarded segments of significant
magnitude (s/t - 0.5), the approximation is always accurate to
within a few percent. Most importantly for the present applica-
tion, it gives fair estimates of the dependence of K, on o and of
the relative magnitudes at extrema on the same crack. These are
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the properties essential to balancing the tendency of KI(e) to
make a crack regular against the disrupting effects of the micro-
structure. Note that KI(Q) is correctly predicted to diverge and
KI(P) to vanish as a . o. This implies that very sharp
irregularities of the crack front are unlikely to be found.

K1 on Surface Breaking Cracks

Convenient algorithms for estimating KI around semi-elliptical
surface cracks have been given by Newman and Raju (2,3). If 2c is
the crack's length on the surface, and a its depth, then for
2c ? a,

=O Aa F(I.,) (4)Ek) c

where E is the elliptic integral of the second kind, k2 = 1-a/c.,
and F is a polynomial in a/c and c/a and a simple trigonometric
function of o, the parametric angle of the ellipse.

To account for departures of the crack front from the semi-
elliptical shape, Equation (4) was combined with Equation (3) by
the following ansatz. The center of mass and the moments of
inertia Ix and I, of an irregular crack were found, and taken to
define the cente and semi-axes (c 2=/ and a = 21/F) of a
smoothed semi-elliptical crack. The x axis was rescaled by the
factor a/c, so that the fitted semi-elliptica' crack would become
a semi-circular crack, and the mirror image was added (Figure
2(b)) to generate an entire irregular, aoproximately circular
crack. Equation (3) was then used to generate values of K (e)
around this scaled crack, normalized to KI(a) = 2c /T. TAese
normalized values of KI(e) represent the relative acceleration and
retardation of local protrusions and retardec segments. These
values were then multiplied by the results of Equation (4) for the
semi-elliptical crack of semi-axes c and a, to account for gross
shape and size effects.

MONTE CARLO SIMULATIONS

A Monte Carlo simulation begins by generating a random, two-
dimensional pattern of grains lying in the plane of growth. A
small crack is introduced, spanning a few grains or perhaps just
one. The crack front is divided into discrete segments, which
increase in number as the crack grows, so that they remain small
relative to the microstructure. The position of the crack front
is updated at regular intervals according to the laws governing
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the growth of each segment, which embody the dependence of the
growth rate on the details of the surrounding microstructure. The
advance of the crack front is always assumed to be in the direc-
tion of the normal to it at any point. If a newly calculated
crack front possesses unphysical loops or overlapping spurs, these
are eliminated by deleting the offending segments.

CLOSURE-NDUCED SHAPE EFFECTS IN AL 7075-T6

A typical simulation of a surface crack is shown in Figure 4. The
grain structure there corresponds to that exposed on a plane cut
normal to the rolling direction and normal to the surface of a
rolled sheet of Al 7075-T6. The average grain length normal to
the rolling direction is - 120 um, and the average depth normal to
the surface is -20 um. After a brief crystallographic phase
immediately following initiation, small fatigue cracks in such
specimens grow in a transgranular noncrystallographic mode.
Plasticity-induced closure causes them to slow down upon reaching -' .-

each grain boundary and ac.c.elerate as each grain is being tra-
versed (Zurek et al (4)). Observations on just the visible sur-
face outlines of individual cracks have led to laws relating the
rate of advance of each surface tip to its distance, z, from the
next grain boundary. In the simulations shown here, the same law
has been assumed to prevail all around the crack front, with z
always measured along a line radiating from the original center of
the crack. The law has the form

dw = AAK 2 (I-sz/2r)2 H(1-Bz/2r) (5)dN

where w refers to displacement of the crack front along the normal _
direction, r is the average radius of the crack, and g is a para-
meter whose value for visible surface crack tips in Al 7075-T6 is
- 0.5. H is the Heaviside step function, and its presence signi-
fies the possibility of part or all of the crack front being
arrested by closure. Small cracks in Al alloys are also arrested
temporarily by grain boundaries, but this effect is relatively
weak in large-grained specimens and it has been ignored here.
(Note, however, that grain boundary arrest is readily treated In
the simulations, and it will be a principal subject of future
studies.)

The simulation shown in Figure 4 exhibits some inportant gen-
eral characteristics of small crack growth. When the crack is
small relative to the microstructure (less than or equal to a few
grains), the crack front can be highly irregular. Parts of it may
be arrested by closure (or grain boundary blockage), and the as-
pect ratio, i.e., the ratio of the average depth to the surface
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length, fluctuates widely from crack to crack and as the crack
grows.

Some statistics of the aspect ratio, defined to be a/2c, where
a = 2/F and c = 2v"-. are shown in Fi ure 5 as functions of the
averagexcrack radiusy defined as r = /ac. Both experimental and
theoretical data in Figure 5 were calculated from observations or
simulations of many cracks: 16 experimental cracks and 100 simula-
tions. The experimental data were obtained by splitting open
specimens after various fatigue exposures and measuring the out-
line of the fatigue crack front. One striking feature of the
experimental data is that many cracks show a/2c > 0.5 at
50 um s r s 100 Ym. This characteristic Is reproduced in the
simulation (continuous curves of Figure 5), and can be traced to
the fact that the grains are highly nonequlaxed. Values of z tend
to be much smaller for those segments of the crack front propa-
gating down into the specimen, and Equation (5) then implies that
a/2c will be augmented. The agreement between the experimental
data and the simulations, both in average and deviation, supports
the hypothesis that the law of growth obtained from surface
observations is also valid for segments of the crack growing down
into the bulk.

When the crack spans more than a few grains, the relative

strength of microstructural factors decreases, and in the simula-
tions the crack front is restored to its smooth equilibrium con-
figuration, with aspect ratio - 0.4, by the variation of KT(e)
according to Equations (1)-(4). For very small cracks, a/2c is
found experimentally to be - 0.2. This was mimicked in the simu-
lations by assuming that initiation (e.g., by fracture of strin-
gers of particles or by persistent slip bands forming microcracks)
generates relatively long, shallow cracks, about 90 um . 4 um.
Such an assumption is, of course, testable by appropriate experi-
ments. For the largest cracks, the experimental values of a/2c in
Figure 5 fall below 0.4 because the cracks were grown in bending.

OTHER STATISTICS OF THE SHAPE OF SMALL CRACKS

There are many other statistical properties of small cracks that
can be conveniently studied by Monte Carlo simulations. These
include: (1) the degree of irregularity of the crack front; (2)
the covariance between the rates of advance of different segments
of the crack front; (3) the persistence of fluctuations in the
degree of irregularity or the aspect ratio; (4) the relationships
between either the aspect ratio or the degree of irregularity and
the rate of growth averaged around the crack front; and (5) the
correlation between the visible surface crack velocity and the
velocity of the invisible subsurface crack.
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CONCLUSIONS

Statistical data for small cracks can be directly related to the
stochastic nature of the microstructure by appropriate laws of
growth. Monte Carlo simulations present a powerful and flexible
method of exploring this relationship.

Comparison of the simulations with experimental data allows
existing laws of growth to be tested and optimized. This process
both illuminates the physical mechanisms controlling growth, and
forms the basis for accurate, calibrated models for predicting
fatigue lifetin. The utility of the experimental data available
for comparison with the simulations does not depend on being able
to measure the actual pattern of grains through which each
individual crack grows.

The simulations offer a powerful and convenient way of inves-
tigating whether the laws of growth for subsurface portions of a
crack are the same as those deduced for growth of the visible sur-
face crack tips. They give immediate insight into the question of
whether fluctuations seen in the velocity of surface crack tips
are generated by local surface phenomena or can be attributed to
stochastic variations in the subsurface crack shape and growth
rate.
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Figure 1. The geometries of (a) the protrusion and (b) the
retarded segment used to estimate K, at the extrema of
an irregular plane embedded crack.
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Figure 2. Illustrating the procedures used to define protrusions
and retarded segments on an irregular crack for thepurpose of invoking Equations (1)-(3).
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Figure 3. Testing the algorithm Equations (1)-(3) against known
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are for ellipses with semi-axes as marked. The shapesof the cracks in (c)-(f) are shown In insets.
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size /a-E, rather than in cycles.
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Figure 5. Aspect ratios of small Cracks in Al 7075-T6 as a func- b
tion of the Crack size AiE. The data (Circles) were
taken at a stress amplitude of 408 MWa. The curves
show the distribution of a/2c found in simiulations of
100 cracks. The solid curve shows the average of a/2c
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MONTE CARLO SIMULATIONS OF THE GROWTH OF SMALL FATIGUE CRACKS
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ABSTRACT

In this paper are presented Monte Cario simulations of small, plane embedded

or surface-breaking fatigue cracks propagating under Mode I cyclic loading through

stochastic microstructures. Unlike most prior statistical models of surface-breaking

fatigue cracks, which study only the behavior of the visible surface tips of the crack, the

simulations calculate the advance of the entire crack front. The rate of growth of any

segment of the crack front is determined by empirical or postulated laws that quantify

the influence of its immediate microstructural environment. To make feasible the

generation of many simulations at reasonable computational expense, approximate,

simple algorithms have been derived for estimating the Mode I stress intensity factor

around a plane, embedded or surface-breaking crack of any shape.

The computational procedures used to carry out the simulations are defined.

The potential of the simulations for analyzing experimental measurements of fluctu-

ations in crack shape and velocity is explored. The dependence on crack length and the

variance of the aspect ratios of small surface-breaking cracks in Al 7075-T6 are

accounted for successfully by the effects of microstructure-dependent plasticity-induced

closure. Various other statistics of crack shape and velocity that can be predicted by the

simulations and compared to experiment are considered. Laws describing the mechanics

of crack growth both at and below the surface can be inferred from such comparisons.
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1. INTRODUCTION

Over the last decade, it has become clear that small cracks are distinguished

from large cracks by, among other things, the fact that they are small relative to the

microstructure. This -,.t only can destroy similitude with large cracks under the scaling

relationship of linear ,.stic fracture mechanics (LEFM), but it can also make small

cracks susceptible to extreme fluctuations in their growth rates. In many alloys, includ-

ing aluminum alloys [1-3], large-grained nickel-based superalloys [4], steels [5-7], and

titanium alloys [8], small cracks are temporarily arrested by grain boundaries. The dura-

tion of the arrest depends on stress level, crack length, and the size of the next grain

[9]. Plastic strains induced ahead of the crack tip are usually much larger for small

cracks than for large cracks at the same applied stress intensity factor [10]. When the

crack is no larger than a few grains, the plastic zone is constrained by the nearest grain

boundaries [I l], causing closure stresses and backstresses to depend on grain size and the

location of the crack front. Other factors determining the growth rate that involve the

stochastic microstructure include roughness-induced closure, crack deflection, and varia-

tions in stress fields due to the anisotropy and random orientation of neighboring grains.

It follows from these considerations that the statistics of the growth rates of

small fatigue cracks are intimately linked to those of the microstructure. In recognition

of this, several probabilistic models of small fatigue crack growth have been formulated

based on more or less explicit laws relating growth rates to microscopic variables

[12-14]. However, these models have either been too simplistic for critical examination

of the assumed role of the microstructure [15], or they have been restricted to modeling

the statistics of only the visible, surface tips of surface-breaking cracks [12-14]. The

validity of the latter models rests on the assumption that fluctuations in subsurface

crack growth are either uncorrelated with or wholly determined by those observed on the

surface. This thesis is probably valid whenever cracks span more than a few grains [16].

In such cases, fatigue lifetime prediction is greatly simplified, since surface observations

alone, in conjunction with stress analysis accounting for the extrinsic effects of part

shape and stress state, will provide sufficient basis for a probabilistic model. However,

for cracks smaller than a few grains, the situation is generally more complicated. As

might be expected from the strong influence of the stochastic microstructure, the shapes
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of such small cra-ks are often highly irregular. Significant departures from semi-

elliptical shapes and large variance in aspect ratios have been reported for small cracks

in aluminum alloys [17,22], steels [18,19], nickel-based superalloys [20], and titanium

alloys [8,21,22]. In such cases, it must be expected that the growth rates of surface tips

and subsurface segments of the crack front are strongly but not necessarily perfectly

correlated. Furthermore, the velocity of the surface crack tips will depend on generally

unobserved fluctuations in the shape of the subsurface crack. To study the statistics of

cracks in this regime, one must model the crack as a two-dimensional entity. By far the S
most convenient format for such work is Monte Carlo simulations, which are the subject

of this paper.

As well as establishing the basis for accurate remaining lifetime predictions,

the Monte Carlo simulations can also serve as a powerful tool for interpreting experi-

mental measurements, especially of crack shape. Variations in crack shape are a direct

reflection of the influence of the microstructurencrack growth. By comparing the o0
statistics of crack shape predicted by simulations with those measured experimentally,

the first direct evidence can be acquired for determining whether the subsurface crack

front is governed by the same mechanisms as the surface crack tips. This question has

been largely avoided in the past. In this paper, analysis of the statistics of the aspect

ratios of small cracks in Al 7075-T6 will be used to provide just such information.

2. STATE VARIABLES FOR THE SIMULATIONS

Several mechanisms related to microstructure can cause small crack propaga-

tion to depart from the predictions of LEFM or, in other words, destroy similitude with

the propagation of large cracks when the growth rate is plotted as a function of the
range AK of the applied stress intensity factor, KI. The mechanisms include temporary

arrest at grain boundaries, deceleration caused by back stress or fracture surface rough-

ness, acceleration caused by enhanced local plasticity, and fluctuations in the local stress

field caused by elastic inhomogeneity and anisotropy. In each case, the strength of the

effect of these mechanisms depends on the size, orientation, and mechanical properties

of the grains in the immediate vicinity of the crack front. This knowledge is based

exclusively on observations of fluctuations in dc/dN for the visible surface tips of small
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cracks, together with detailed records of the surface microstrucure through which the
crack tips are propagating. However, it is reasonable to begin by hypothesizing that the
same or at least similar mechanisms are also affecting the propagation of subsurface
segments of the crack front, with the pertinent microstructural factors being the size,
orientation, and mechanical properties of invisible, subsurface grains. In that case, the
microstructure-based modifications to the crack driving force will fluctuate around the
crack front in concert with fluctuations in the microstructure. The stochastic
microstructure will thus cause fluctuations in the local rate of advance of different S

segments of the crack front, and the crack front must become irregular. It is the
purpose of the Monte Carlo simulations to quantify such irregularity, and relate it
directly to laws of growth hypothesized or determined empirically to represent the
effects of the microstructure.

In this first exposition of the Monte Carlo simulations, it will be assumed that

the driving force acting at each point on the crack front can always be expressed in

terms of a local effective Mode I stress intensity factor, KI f- , or its range, AKI f , the

applied cyclic stress amplitude, aa, the size and shape of the crack, and various
parameters describing the immediate microstructural environment of the point. Since

stress level and crack size may appear as independent variables, it is not necessary that

similitude exist between small and large cracks under scaling at constant AKeff .  In
other words, it is not assumed that there exists any definition of AK f f that will lead to
small and large crack data being correlated in some variant of LEFM. Nevertheless, it is
convenient to express the laws of growth and especially the effects of irregular crack

shape and some of the effects of stochastic microstructure in terms of the variable KI .

The tendency of the stochastic microstructure to make the crack front irregu-
lar is balanced by the dependence of KI on crack shape. For example, for an embedded

irregular plane crack, KI is generally reduced on protrusions and enhanced on retarded
segments, so that, in the absence of microstructural fluctuations, the crack always tends

to be circular. For a surface-breaking crack under mode I loading, the equilibrium shape
is approximately a smooth semiellipse of aspect ratio 0.4.

The degree of irregularity expected for any small crack will therefore be

determined by the relative strengths of the disordering microstructural effects and the

3
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smoothing shape dependence of K1. Since K, can be calculated, the laws purporting to

describe microstructural effects can be tested by measuring the degree of irregularity.

Note that as the small crack grows into a large crack, the role of the microstructure

diminishes, and the crack will generally be driven by K, to be smooth.

3. APPROXIMATE, FAST ALGORITHM FOR KI

The feasibility of the Monte Carlo simulations depends critically on being able

to estimate KI very quickly for plane cracks of arbitrary shape. Exact calculation of KI

would be prohibitively slow and, therefore, simple approximations to KI have been

derived.

The estimation of KI is based on the assumption that K1 is determined solely by

the external stress and the locus of the crack front. The possibility of generalizing the

estimates to treat the effects on K, of residual stresses, fracture surface roughness, or

crack deflections is discussed in Section 7.

3.1 Approximation for KI Around an Embedded Crack

The approximation for K1 around an embedded, plane crack is based on

estimates K1 (a) of K, at the zenith, P, of a protrusion, and K (a) at the nadir, Q, of a

retarded segment, where a is the half-angle subtended by either feature at the center of

the crack. Both the protrusion and the retarded segment considered have the square-

shouldered geometry shown in Fig. 1. The uniform applied tensile stress has the value a.

3.1.1 KTLqj) at the Zenith of a Protrusion S

K (a) was estimated by calculating the reduction from Kt = 2o/t/w for a

circular crack of radius t generated by closing most of the crack down to radius s (see

Fig. la). The normal surface tractions required to close the part of the crack shaded in K

that figure were approximated by the stress field that exists outside a loaded crack of

radius s, given analytically by Sneddon [23]. The estimate of K is then obtained by inte-

grating over the shaded area the product of Sneddon's stress field and the Green's

function for the penny crack in a homogeneous, isotropic material obtained by

Smith et al [24]. Thus, 0

4
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1 4a z(r) 11
K, (a) = 2o4A/w - 1 tn P-tnw )

s/t (wt)3/2 /1_p 2 2

- tan- 4 lk tan 21} t2pdp , (I)

where p = s/t and

20

oy(r) = 2a [sin-1 s s (2)az~r t /r2_s2

When a = 0, this expression is exact. Equation (1) then yields zero for all values of s and

t, since, when the crack is closed between s and t, there is no longer a singularity at
r = t. When a > 0, oz(r) of Eq. (2) is in fact insufficient to close the crack at any point for

which r < t. This can be seen by observing that, if the remanent crack opening displace-

ment were exactly zero over some subspace of (s < r < t, a < a < 27,-a) (where 8 is the
angular variable defined in Fig. 1) and nonzero elsewhere, then some derivative of the

nonnegative displacement field must have a discontinuity for s < r < t. This is impossible
because all the derivatives of the field oz(r) of Eq. (2) are continuous over s < r < t.

Nevertheless, the results given below show that the displacement is probably small

except near 8 = a (the edge of the protrusion), and therefore the approximation should be
reasonable.

Normalized to 2cit_/, K1 is independent of t. Because of the singularity in

the integrand of Eq. (1) at p = I, which arises from the Green's function, it is not an ade-
quate approximation to replace az(r) of Eq. (2) by the asymptotic form A(r-s)- 1/ 2 , even

for s - t. The integral of Eq. (1) may be evaluated conveniently by cubic spline
integration after removing the singularities at p = s/t and p = I by the substitution

sin 2u = P]t

KI(a)/(2o. ,tT7) is shown in Fig. 2. It is significantly reduced from unity
only at small a (tens of degrees), even when s = 0. Further calculations show that 80% of

the reduction is generated by the surface forces applied within 113 of the protrusion for

5
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all values of s/t and a _< w/2. In other words, the protrusion is only weakly influenced by

the more distant periphery of the crack.

P
Numerical calculations show that KI (a) evaluated according to Eq. (1) is well

approximated for s/t > 0.5 by

I - 2 -1 s/t 2K1c) 2 ti tn r-*s/t tan 2] . 3

3.1.2 KQ(a) at the Nadir of a Retarded Segment"I

A similar argument was used to estimate KI . The surface tractions required to

close down the fracture surfaces of a loaded crack over the area shaded in Fig. lb can be

related by an integral equation [25] to the normal displacement of the original penny

crack of radius t. If the required stress field is assumed to be independent of the polar

angle e, which is a fair approximation when evaluating K, (a) at the center of the

retarded segment, then the integral equation is one-dimensional and easily solved

numerically as follows.

The normal displacement along e = 0 of a penny crack of radius t subjected to

surface tractions oz(r) over -a < o < o, is given by

4(1_2) t c'az(r) h(x/c',r/c',a)rdr
:x E = 4 f 2 dc' ,

x c,2/ixc ,/1-r /c

(4)

where v is Poisson's ratio, E is Young's modulus, and

C-a-e

21 tan-l[_ tan '-I]-tan-l ~ a
29 2w ta 1 g-~ tan

h(pqc) .f 2 d

27,2 o 1-2pcos(e-a) + p2

(5)

The function h is readily computed, stored, and evaluated subsequently by interpolation,

since 0 < h !5 1.
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If u(x) in Eq. (4) is made equal to the opening displacement of the original

penny crack under load o, i.e.[28],

4(1-v )o 2 - 2
(u(x) = A E tx (6)

and one writes oz(r) = Ez(r)/(r-s) 112 to introduce explicitly the singularity at Q, then
Eq. (4) becomes a straightforward integral equation in Qz(r); and
KQ (a) = iz(s)- v2 7. The integral equation is solved by guessing Qz(r), and iterating by
some heuristic algorithm until self-consistency is achieved. Further numerical calcula-
tions then show that, to a good approximation for s/t > 0.5,

K ( ) 2c;. is-T 1 tan -' l l s t  tan a] (7)
1-s/t 2~} 7

3.1.3 Embedded Plane Cracks of Arbitrary Profile

For stochastic crack fronts of arbitrary profile, the identification of the
parameters s, t, and a used to calculate X and KQ is subjective. The approach followed

I t
was to settle upon reasonable definitions of s and t for each feature on the crack front,
and then introduce a single parameter ao related to a, which could be varied to optimize
the estimated values of KI for a nearly circular elliptical crack. This procedure was then
tested by comparison with various known solutions.

The first task in analyzing a stochastic crack front (e.g., Fig. 3a) is to identify
the major protruding and retarded features. These are defined as those extrema i,j,... for
which Iri - ri+ II > y (rmax - rmin), where r i is the radius of the crack at the ith extremum
measured from the center of gravity of the crack, and rmax and rmin are the maximum
and minimum of the set {ri}. The factor y is set arbitrarily to 0.7: its exact value has
negligible effect on the outcome of the simulations. For each protrusion thus defined, t
in Eq. (3) is identified with r and s with r1 ; and, for each retarded feature, s in Eq. (7) is
identified with r and t with r i . where r is the average radius of the entire crack front.
(Note that this convention is slightly different to that presented in a preliminary report

of this work [26].)

7
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The half-width a of each such protrusion or retarded segment is defined as half

the angle between the points on either side of the extremum in question at which the
radius of the crack is equal to its average radius (Fig. 3a). Of course, square-shouldered

protrusions or retarded segments, such as those on which the estimates

of KI and K1 were based, almost never occur in natural fatigue cracks, because KI
vanishes at the apex of a square feature that leads the crack front and diverges at such

points that trail the crack front. Because of this and the approximations from which

Eqs. (3) and (7) were derived, the term a/2 therein was replaced by ir/2*a/cto , with the

parameter a. evaluated by calibration against K I for nearly circular elliptical cracks.

With K1 and KQ evaluated at successive extrema according to Eqs. (3) and (7), the value

of K, at any point in between is then simply written as

KI(e) = [(r(e) - s)K + (t - r(e))KQ]/(t - s) (8)

where r(e) is the radius of the crack at that point, and s and t are now the radii at the

extrema, as shown in Fig. 3a.

The exact results for an elliptical crack [27] with s = t can be fitted perfectly

by Eq. (8) by adjusting ao" With this value of ao retained for all cases (viz., ao m 0.402, 3

found by fitting to KI for an ellipse having s/t = 0.99), the agreement with other known

solutions is as illustrated in Fig. 4. For all the cases shown, the approximation is always

accurate to within a few percent. Of course, the near agreement at the sharp points of

cases (c), (d), and (e) is fortuitous, since K1 should really vanish there, and both the

approximation and the numerical results of Mastrojannis et al [28] are in error in this

regard. However, this is an unimportant shortcoming, because extremely sharp features

are not found in natural cracks.

Most importantly for the present application, the approximation gives fair

estimates of both the dependence of K1 on a and its relative magnitudes at smooth

extrema on the same crack. These are the properties essential to balancing the tendency

of KI(e) to make a crack regular against the disruptive effects of the microstructure.

8
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Note that KQ is correctly predicted to diverge and KP to vanish as a - o. Because of the

definition of s and t for the general crack, KI for an embedded crack will always be

enhanced on retarded segments and diminished on protrusions. Thus it is assumed that, in

the absence of microstructural effects, an embedded circular crack is always stable with

respect to small fluctuations in its shape. This is not the case for straight cracks [29].

3.2 K, on Surface-Breaking Cracks

Convenient algorithms have been given by Newman and Raju for estimating KI

around semielliptical surface cracks in rectangular beams of width 2b and depth t under

remote uniform tension o. and remote bending stress Sb [30,31,32]. If 2c is the crack's

length on the surface and a its depth, then for 2c > a,

_a a a c

K )= ( + H F(, (9)

where E is the complete elliptic integral of the second kind; k2 = I-a 2/c 2; F is a poly-

nomial in a/c, c/a, a/t, and c/b, and a simple trigonometric function of , the parametric

angle of the ellipse; and Hs , the bending multiplier, is a simple algebraic function of a/t,

a/c, and sin*.

To account for departures of the crack front from the semielliptical shape,

Eq. (9) was combined with Eqs. (3), (7), and (8) by the following ansatz. The center of

mass and the moments of inertia Ix and Iy of an irregular crack were found, and taken to

define the center and semi-axes (c = 2/Iy and a = 2AIx) of a smoothing semielliptical
crack. ( x was calculated for the combination of the surface-breaking crack and its

mirror image.) The x axis was rescaled by the factor a/c, so that the fitted semi-

elliptical crack would become a semicircular crack, and the mirror image was added

(Fig. 3b) to generate an entire irregular, approximately circular crack. Equation (8) was

then used to generate values of K1(0) around this scaled crack, normalized to

K1(a) = 2o=/a/. These normalized values of KI(e) represent the relative acceleration

and retardation of local protrusions and retarded segments. These values were then
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multiplied by the results of Eq. (9) for the semielliptical crack of semi-axes c and a, to

account for gross surface, aspect ratio, and size effects.

The quality of the results generated by this procedure was then tested by com-

parison with the essentially exact numerical solutions of Gyekenyesi and Mendelson [33]

for a rectangular surface crack in a finite rectangular slab. In Ref. 33, calculations were

made for a crack embedded in a slab whose depth and width in the crack plane were as

shown in the insets of Fig. 5, and whose length normal to the crack plane was also finite

(3.38c), whereas Newman and Raju have supplied expressions (Eq.(9)) for bars of infinite
length only. With the understanding that this might detract from the fairness of the test,

the comparison of the results of Ref. 33 and the present approximate algorithm is pre-

sented in Fig. 5. Despite the fact that the rectangular surface crack is an extreme shape
and therefore a severe test, the agreement is reasonable except for the case of very low

aspect ratio (a/2c = 0.15), and even there the qualitative trends are faithfully repro-

duced. Considering that the present algorithm will always tend correctly to Newman and

Raju's standard and well tried [34] expressions (Eq.(9)) as the crack shape tends to semi-

elliptical, and that crack fronts generated in the simulations and found naturally are

generally fairly smooth and not far from semielliptical, the approximate algorithm is
adequate for the purpose at hand. Note, in contrast, that K1 for the fitted semi-ellipse

using Eq. (9) alone (dotted curves in Fig. 5) fails completely to follow the correct

variation around the crack front.

4. THE GENERATION OF RANDOM MICROSTRUCTURES

A single instance of a stochastic microstructure is generated as follows.

Nucleation sites of a prescribed average density are placed on the plane of the crack in a
Poisson process (i.e., with no correlation in their locations) by invoking a pseudo-random

number generator. The grain boundaries are then determined by the Wigner-Seitz con-

struction, which defines each grain as the area bounded by the perpendicular bisectors of
the lines joining that grain's nucleation site to the nucleation sites of all its contiguous

neighbors. The resulting cellular structure, an example of which is shown in Fig. 6, is a

set of Voronoi, Dirichlet, or Wigner-Seitz polygons. All the polygons have straight edges,

at least three neighbors, and are convex. The average grain size is established by the
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prescribed density of nucleation sites. There is some correlation between the sizes of

adjacent grains, with large (small) grains tending to have large (small) neighbors. This

correlation is often expressed in terms of the number of sides of the polygons, but it also

exists for their areas. The extensive literature on random Voronoi polygons may be con-

veniently entered through Refs. 35-37.

There are some characteristics of Voronoi polygons that are unrealistic in the

context of metal or alloy microstructures. For example, there are numerous very small

grains, which would probably be subsumed in an alloy by larger neighbors during anneal-

ing, and the straight-edged polygons are unnaturally smooth, since natural grain bound-

aries are generally faceted, curved, and otherwise irregular. However, the dependence

of the laws of crack growth on local microstructure does not usually involve such

geometrical' detai!s. The laws of growth refer perhaps to the average grain size in the

vicinity of a segment of the crack front, or some crude measure of local slip distances.

Therefore, Voronoi polygons are, to the best of current knowledge, quite acceptable for

the Monte Carlo simulations. Note that nonequiaxed grain structures can be generated

simply by rescaling one of the axes.

The procedure for executing the Wigner-Seitz construction was as follows. For

a given nucleation site, i, the grain enclosing it was first supposed to be the entire,

usually rectangular, area A within which crack growth was going to be simulated. For

every other nucleation point, j, lying within a cutoff distance, dc, of site i. the

perpendicular bisector was formed, and the question asked whether it intersected the

polygon currently recorded as surrounding site i. If so, the polygon was reduced to

include the appropriate interval of the bisector as a new side. This was repeated for all

sites j within dc of site i, and then for all sites i. The area A must always be chosen

large enough that an embedded crack never reaches the boundary region during a

simulation, because this implementation of the Wigner-Seitz method is affected by the

external boundaries of A: unusually large grains are formed there. When required, a free

specimen surface was formed by deleting all grains and parts of grains lying beyond a line

drawn across area A, just as though the specimen had been physically cut.

To enable convenient reference to the information contained in a given micro-

structure, a discrete square grid was defined on the plane of the crack. Each point on
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this grid was then associated with the number of the grain containing it and with other

measures of the local microstructure. For example, for modeling crack growth in Al

alloys, an appropriate measure upon which plasticity-induced closure depends is the dis-

tance from the grid point to the next grain boundary measured along the line emanating

from the center of the crack. Other characteristics, such as grain orientation, might be

preferred for other materials.

5. INITIATION AND PROPAGATION OF A CRACK FRONT

The simulation of fatigue crack initiation can be treated according to various

models. Depending on the known mode of initiation and the stage of crack growth under

study, one might begin with a crack spanning several grains, or extending exactly to the

boundaries of just one grain, or smaller than a single grain, or even vanishingly small.

For crack fronts that are not assumed to coincide initially with a grain boundary, the

aspect ratio and shape remain to be prescribed. For naturally initiated cracks, it is fre-

quently the case that initiation occurs mainly in unusually large grains. The appropriate

initiation model that takes all such factors into account must be chosen for each applica-

tion of the Monte Carlo simulations.

A Monte Carlo simulation begins by generating a random, two-dimensional pat-

tern of grains lying on the plane of growth, as described in the preceding section. The

initial crack is introduced according to the initiation model. The crack front after Ni

cycles (beginning with N1 = 0) is represented as a sequence of straight line segments

meeting at the vertices {(xj,yj)}. The applied cyclic mode I stress intensity factor,

,&K( J ) , corresponding to the prescribed external stress range, is calculated at each ver-

tex j according to the algorithms derived in Section 3.3. The microstructural

environment of the vertex j can be found immediately by identifying the element of the

square grid (see Fig. 7) in which (xj,yj) lies, and referring to the corresponding elements

in the stored tables of microstructural parameters for the current microstructure. For a

continuously varying microstructural parameter such as the distance to the next grain

boundary, it is necessary for preserving accuracy in the simulations to use linear

interpolation amongst values stored on the square grid to obtain the value of (xj,yj).

AK( J  (or K( J ) and K(J )) and the microstructural parameters for vertex j are then
I mi n max
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supplied to a subroutine that invokes the prescribed laws of crack growth for the given

simulation. The output of that subroutine is the velocity, vj, of the crack front at the

vertex j.

The crack front after Ni+l cycles is found by assuming that it advances in the

direction of the normal to the front at every point. At each vertex, this direction is

taken to bisect the angle between the two adjacent straight segments (Fig. 7). The dis-

tance over which vertex j advances is just v,(Ni+ 1-Ni). The step length Ni+I-Ni is chosen

to be small enough that the simulation is independent of it. This entire process amounts

to first-order integration of a set of coupled differential equations governing the advance

of the vertices of the crack front according to the prescribed laws of growth.

The number of vertices on the crack front is chosen initially to be large enough

that each segment is ;mall relative to the scale of the microstructure. This condition i

maintained as the crack grows by adding a new vertex at the midpoint of any segment

that exceeds some critical length.

Because cracks tend to grow faster as they get bigger, it is usually convenient

to control the maximum or average of the distances of advance, dj, during each incre-

ment of cycles, rather than choosing Ni+I-N i to be constant. In this way, the spacing

between successive calculated crack fronts can be kept small relative to the

microstructure.

5.1 Crack Growth in the Absence of Microstructural Effects

The propagation of surface cracks growing according to the Paris law

vj = AGaK() p  (10)

in the absence of any microstructural effect is illustrated in Fig. 8. Note that memory

of the initial value of the aspect ratio disappears by the time the surface length of the

crack has increased two- or three-fold, and that the equilibrium shape is approximately,

but not exactly or necessarily, semi-elliptical. The velocities vs of the surface tip and vb

of the bottom of a crack whose shape has reached equilibrium at an aspect ratio a/2c are

related by
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When the velocities are governed locally by the Paris law, it follows that the equilibrium

aspect ratio must depend on the parameter p in Eq. (10).

The variation of the aspect ratio with increasing crack size and the

dependence of the equilibrium shape on the parameter p have been studied previously by

Carter et al for large cracks [34], using Newman and Raju's expression, Eq. (9), for AK. 0

Carter et al assumed that the crack always remains semi-elliptical with semiaxes c and a

given by half the surface length and the depth. Invoking Eq. (9) for the values of c and a

so given at any stage of the growth, they calculated the progression of the surface tips

and deepest part of the crack only. In fact, their approach can be extended to all other

points on the crack front, by applying Eq. (9) for the same c and a and all * between 0

and 7r, without altering the results obtained at € 0 and ir/2. The crack front resulting in

a semi-infinite solid from such a calculation is illustrated in Fig. 9a, where sufficient

growth has occurred for the aspect ratio a/2c to have reached equilibrium. The front is

clearly not semi-elliptical: the surface tips have surged in advance of the rest of the

crack, and the front is mildly reentrant near * = 30° and 150 ° . The dashed curves in
Fig. 9 show semi-ellipses with semi-axes (c,a) and (2/Fy, 2/F).

Figure 9b shows a crack front that has reached equilibrium with each point on

the crack front propagating according to the Paris(Dw and AK calculated according to (. "

the algorithm of Eqs. (3), (7), (8), and (9). The protrusions at the surface tips are now

reduced relative to Fig. 9a, and the reentrant areas are much shallower, but the front

still departs significantly from a semi-ellipse.

5.2 Crack Growth in the Presence of Microstructural Effects

If the laws of growth imply that certain segments of the crack are merely

accelerated or retarded in growth, then the simulation proceeds just as in the absence of

microstructural effects, except that the crack front may, of course, be irregular. On the

other hand, if the laws of growth admit arrest of the crack, then part or all of the crack

front may stop growing altogether, either temporarily or permanently. The state of
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being arrested must then be continually monitored as an attribute of each vertex. If all

vertices are arrested, then the subroutine containing the laws of growth is interrogated

to determine whether the arrest is temporary or permanent, based on the existing

microstructural environment of the crack front. If arrest is temporary, the record of

elapsed cycles is modified and each vertex is freed to propagate as the laws of growth

allow. If arrest is total and permanent, the simulation ceases.

When microstructure influences the growth, the crack front frequently

develops small, local minima in the crack radius, illustrated schematically in Fig. 1Oa.

The algorithm of Eqs. (3), (7), and (8) for estimating KI generates large values at the

nadir of such a narrow retarded segment, because KQ (Eq. (8)) diverges as the half-angle

a vanishes. This causes the prediction of an unusually large advance for that part of the

crack front during a finite increment in elapsed cycles, leading to the false generation of

a local protrusion (Fig. lOb). The protrusion in turn generates large values of KI on

either side of it, and a distortion of the crack front similar to the original locally

retarded segment occurs on the subsequent iteration (Fig. lOc). This unphysical leap-

frogging, which can propagate indefinitely if unattended, can be cut short by identifying

the transition from Fig. 10a to Fig. 10b and resetting the crack front along the smoothing

dashed line shown in the latter. Note that if there is a persistent microstructural reason

for the local change in shape of the crack front, this will still occur over several or many

increments of cycles.

When the effects of the microstructure are very strong, the crack front

becomes highly irregular, and certain topological quirks can arise when calculating the

new position of the front according to the algorithm illustrated in Fig. 7. For example,

the crack front can form extraneous closed loops by crossing over itself, or spurs where

* it doubles back on itself. The former phenomenon must be excised from the crack front

because it quickly leads to numerical explosions in the algorithm for advancing the front;

and the latter because it is beyond the scope of the algorithms for estimating KI. All

such aberrations can be readily identified by demanding that the vertices on the front

always progress clockwise (or ai *clockwise) around the center of mass of the crack, and

deleting any that do not.
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6. STATISTICS OF THE SHAPE AND GROWTH RATE OF SMALL FATIGUE CRACKS

In this section will be presented a comparison of the measured and predicted

statistics of the aspect ratios of small surface cracks in Al 7075-T6, and the definitions

of other statistics of shape and growth rate for which experimental data do not yet exist,

but could be readily obtained.

6.1 Statistics of the Aspect Ratio

A typical simulation of a surface crack is shown in Fig. 11. The grain struc-

ture there corresponds to that exposed on a plane cut normal to the rolling direction and

normal to the surface of a rolled sheet of Al 7075-T6. The average grain length normal

to the rolling direction is - 120 um, and the average depth normal to the surface is

- 20 Urn. After a brief crystallographic phase immediately following initiation, small

fatigue cracks in such specimens grow in a transgranular noncrystallographic mode.
Plasticity-induced closure causes them to slow down upon reaching each grain boundary

and accelerate as each grain is being traversed [3]. Because of these growth charac-

teristics, at some stage the crack front coincides approximately with the boundary of the
grain in which the crack initiated. In the absence of more complete information about

initiation, the simulations were therefore begun by assuming that the crack front

coincided with the boundary of whatever surface grain contained the origin. Observa-

tions on just the visible surface outlines of individual cracks in Al 7075-T6 have led to
laws relating the rate of advance of each surface tip to its distance, z, from the next

grain boundary. In the simulations shown here, the same law has been assumed to prevail

all around the crack front, with z always measured along a line radiating from the

original center of the crack. The law has the form

dw 2 -2

dN AAK 2 (1-sz/2r) H(l-az/2r) (12)

where w refers to displacement of the crack fror- along the normal direction, r is the

average radius of the crack, and s is a parameter whose value for visible surface crack

tips in Al 7075-T6 is - 0.5. H is the Heaviside step function, and its presence signifies
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the possibility of part or all of the crack front being arrested by closure. Small cracks in

Al alloys are also arrested temporarily by grain boundaries, but this effect is relatively

weak in large-grained specimens and it has been ignored here. (Note, however, that grain

boundary arrest is readily treated in the simulations, and it will be a principal subject of

future studies.)

The simulation shown in Fig. 11 exhibits some important general characteris-

tics of small crack growth. When the crack is small relative to the microstructure (less

than or equal to a few grains), the crack front can be highly irregular. Parts of it may be

arrested by closure (or grain boundary blockage), and the aspect ratio, i.e., the ratio of

the average depth to the surface length, fluctuates widely from crack to crack and as the

crack grows.

Some statistics of the aspect ratio, defined to be a/2c, where a = 2/I x  and

c = 2/_, are shown in Fig. 12 as functions of the average crack radius, defined now

as r = vac. The continuous curves in Fig. 12 show the history of the aspect ratio for

10 simulated cracks. The points show experimental data, which were obtained by

splitting open specimens after various fatigue exposures and measuring the outline of the

fatigue crack front. One striking feature of the experimental data is that many cracks

show a/2c > 0.5 at 50 pm _<r _ 100 lrm. This characteristic is reproduced in the

simulations and can be traced to the fact that the grains are highly nonequiaxed. Values

of z tend to be much smaller for those segments of the crack front propagating down into

the specimen, which are therefore less retarded by plasticity-induced closure (see

Eq. (12), and a/2c is augmented. The agreement between the experimental data and the

simulations, both in average and deviation, supports the hypothesis that the law of

growth obtained from surface observations is also valid for segments of the crack

growing down into the bulk. Note, however, that other laws of growth could be proposed

that might also account for these limited data. To achieve the best test of postulated

laws, it will always be desirable to have other kinds of data in conjunction with data on

shape; for example, a history of the velocity of various segments of the crack front,

rather than just the position of the front at one time. Such data could feasibly be

acquired by measuring striations.
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When the crack spans more than a few grains, the relative strength of micro-

structural factors decreases, and in the simulations the crack front is restored to its

smooth equilibrium configuration, with aspect ratio -0.4, by the variation of KI(e)

according to Eqs. (3), (7), (8), and (9). For very small cracks, a/2c is found

experimentally to be - 0.2, which was reproduced in the simulations by virtue of the

assumption that each crack began by spanning one grain and the fact that the grains are

elongated. Such an assumption is, of course, testable by appropriate experiments.

When /ac > 100 pm, a/2c is predicted in the simulations to decrease 0

steadily. At first this reflects the lessening of the effects of plasticity-induced closure,

which favored higher values of a/2c, but, for /ac > 200 um, a/2c decreases because the

fatigue was performed in bending. This fact enters the simulation through the bending

multiplier Hs in Raju and Newman's expression Eq. (9). However, the experimental data

available for /ac > 200 pm show a/2c to be still less than in the simulations. There are
various plausible explanations for this discrepancy. First, the experiments were done

using tapered cantilever specimens 1500 pm thick and having one fixed end, whereas

Eq. (9) refers to a rectangular beam in pure bending. This difference in geometry intro-

duces uncertainty about the rate at which the crack will be slowed down as it grows down
towards the neutral plane. Second, coalescence of surface cracks is observed occa-

sionally in Al 7075-T6, which would also lead to unusually low values of a/2c. Third,

there may well be a hidden source of inhomogeneity in the material varying on a 6

characteristic spatial scale greater than the grain size. For example, fluctuations in

hardness or texture in crystal orientation spanning several grains may exist, causing

significant fluctuations in a/2c to persist for cracks many times the grain size. More

experimental data would be required to test this possibility.

It is noteworthy that the histories of a/2c generated by the Monte Carlo

simulations depend on the parameter % used in the algorithm for KI (Eqs. (3) and (7))

only weakly for individual simulations and negligibly when averaged over many

simulations. On the other hand, they depend strongly on the parameter 0 appearing in

the closure law Eq. (12), a/2c showing increasing scatter and achieving higher values for

/ac - 100 Pm as B increases. Thus the statistics of shape are not vitiated by the

quality of the approximation to KI. They are influenced primarily by the geometrical
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description of the stochastic microstructure as it influences the crack front through the

law of growth. The best agreement with the experimental data of Fig. 12 was found by

eye to be for a = 0.7 t 0.1. It is not surprising that this value of 8 should depart slightly

from that determined originally by studying surface crack tips alone [3], since the

present simulations account more completely for variations in the stress intensity factor

and crack shape effects.

6.2 Other Statistics of the Shape and Growth of Small Cracks

There are many other statistical properties of small cracks that can be con-

veniently studied by Monte Carlo simulations. These include: (1) the degree of irregular-

ity of the crack front; (2) the covariance between the rates of advance of different seg-

ments of the crack front; (3) the persistence of fluctuations in the degree of irregularity

or the aspect ratio; and (4) the relationships between either the aspect ratio or the

degree of irregularity and the rate of growth averaged around the crack front.

Irregularity may be defined in various ways, and the appropriate definition may

depend on the physical mechanisms that generate it. One simple definition is

X2 = f (l-r(e)/p(e))2d/Jfde , (13)

where r(e) is the radial distance from the center of gravity of the crack to the crack

front at angle 0, and p(e) is the equivalent distance for the elliptical crack of semi-

axes C = 2/YI and a = 2/Tx. The function X measures the relative departure of the

crack from the ellipse of best fit, averaged around the crack front. X2 is generally
expected to be largest for small cracks and become smaller as the cracks grow. This

trend is illustrated in Fig. 13 for the same simulations for which a/2c was presented in

Fig. 12. The magnitude and rate of decay of X2 , and the covariance between values of

X2 at different times for the same crack, are direct indicators of the strength of the

stochastic microstructural factors that tend to disrupt crack growth.

The covariance between the rates of advance of different segments of the

crack front (at angles 0 and 8') may be defined by
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Pv(e,el,) E{(v(ei)- (i)) (v(e,2)v(7))} (14)

where E denotes the expectation value for an ensemble of many cracks, and v(r) =
E{v(i)}, where v (T) is the rate of growth of a crack of size r = /ac averaged around
its front. pv is very important to the estimation of remaining fatigue lifetime when
experimental observations are limited. For example, NDE of surface cracks generally
returns no more information than the visible surface crack length, and perhaps some
gross estimate, by acoustic or eddy current measurements, of the size of the invisible
subsurface crack. In the small crack regime, it is then critical to know with what cer-
tainty the rate of growth of the subsurface crack can be inferred from the rate of growth
of the visible crack. The covariance, pv(8,0), obtained from the Monte Carlo simulations
using models tested and calibrated by comparing that and other statistics with destruc-
tively inspected cracks, provides the answer. Note that a transition in pv(O,0) is expected
as the crack grows out of the small crack regime. The surface velocity of small cracks
will be relatively strongly correlated with the velocity of subsurface segments, because
the same microstructural factors may often be affecting both. For larger cracks, the
microstructural environment of the surface tips is unrelated to the subsurface micro-

structure, and pv(eO) will ultimately vanish for a * 0.

The persistence of fluctuations in shape can be quantified by the covariance Px -
of values of X2 determined at different times for the same crack:

E{ (X ((2)-E(X Cr1)))1px( 19, 2 ) -- . (1 5)e
r2=E{ (X2( r1)-E(X2(r)))2 E{(X 2 (_2)-E(X 2( 2 )))

x(,2 r will generally decay as exp[-(i 2 -r 1 )/x and the half-life x, itself a function
of r 1 , is a useful measure of both the spatial wavelength of the underlying microstruc-
tural disorder and the range of influence of one part of the crack upon another.

One would generally expect the growth rate averaged around the crack front
to be strongly correlated with the degree of irregularity. For example, if the role of the
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microstructure is to retard the crack front locally where it lies in large grains, then a

highly irregular crack in which the crack is retarded at several places would usually be

propagating slower than a smoother crack front of which no segment is severely

retarded. Or, conversely, if the role of the microstructure is to cause local acceleration

of the front, then the more irregular cracks might be expected to be propagating faster

than the average. In either case, comparison of such correlations predicted by simula-

tions with those found by experimental (destructive) measurements of crack shape and

velocity would serve as a further direct test of postulated laws of growth. For similar

reasons, the average velocity and the aspect ratio can be expected to be correlated. This

correlation could be especially useful for predicting remaining lifetime based on NDE

measurements, since representative aspect ratios can be measured even for irregular

cracks by acoustic methods.

7. SOME FEASIBLE GENERALIZATIONS AND KNOWN LIMITATIONS

The basis of the feasibility of the Monte Carlo simulations is the approximate

algorithm for estimating KI for a plane crack of arbitrary shape. In devising and applying

this algorithm, it has been assumed that Kl depends only on the magnitude of the

external stress and the locus of the crack front. In some cases, the effective stress

intensity factor Keff acting at each point on the crack front may be modified by further

geometrical or material considerations. For example, the minimum value

Kmin- of Keff in any cycle can be increased locally by fracture surface roughness or

debris propping open the crack front. In such a case, the required modification would

pose an additional calculation, beyond the application of the algorithm developed in

Section 3. For cracks propped open by the contact of point asperities, the additional

variation in K1
f f could be estimated using the Green's function for a penny crack with

point loading on the fracture surfaces [38]. Similar estimates could be made of the

effect on K f f of closure pressure generated by residual stresses that vary from grain to

grain, perhaps invoking approximations based on analytical expressions for K1 for

elliptical cracks under arbitrary loading [38]. The variation in K1 caused by stochastic

out-of-plane deflections of the crack front might be estimated from other pertinent

calculations in the literature [39-42].
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The algorithm for estimating the dependence of KI on crack shape was derived
from consideration of cases of uniform mode I loading. To deal with nonuniform loading,

the shape dependence was combined in an ad hoc way with the canonical results of Raju

and Newman [27,35,36] for surface-breaking semielliptical cracks in finite beams. Since

Raju and Newman's expression extends to remote bending as well as uniform loading, the

net algorithm ostensibly shares the same generality. However, it is probably unsound to
assume that the shape dependence of KI is still well represented when the crack reaches

or crosses the neutral plane. When the crack has penetrated the neutral plane, part of it

is in compression, and it would then no longer be necessarily true that protrusions would
be marked by relatively low values of KI and retarded segments by relatively large

values. In the simulations and experiments reported in Section 6, the cracks never pene-

trated more than 20% of the way through the specimen, so that loading was never far
from uniform, and the application of the algorithm ought to have been valid.

The treatment of spectrum loading in Monte Carlo simulations is very straight-

forward. There is no restriction on how the load might be varied as the crack grows, and

it is in principle simple to intersperse periods of uniform or bounded random loading with

spike overloads. For small cracks, load history effects and the response to overloads are
very likely dependent on the local microstructure, which would create another

mechanism by which stochastic microstructure could cause a crack to be irregular. As

for other such relationships, measurements of crack shape following overloads, when

analyzed by Monte Carlo simulations, would elucidate the mechanics of retardation.

Although the Monte Carlo simulations have been presented in the context of
fatigue crack growth in alloys, a very similar approach is clearly applicable to stable

growth under monotonic loading. For example, in granular ceramic materials, monotonic

strength is often determined by the limits of stable growth of cracks that are small
relative to the microstructure, experience large, stochastic variations in the net driving

force acting around the crack front, and therefore grow with irregular shapes.

Relatively slight modifications to the Monte Carlo code would be required to model such

growth, and the mechanics of growth could be examined by analyzing the statistics of
crack shape in ways analogous to those proposed here for fatigue cracks in metals.
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The Monte Carlo simulations are very flexible and well divided into self-
contained computational units. With minimal programming effort, it is straightforward

to change the method of generating random microstructures, and this may be done with
no effect on the code for crack propagation. The laws of growth can be substituted

freely, and the incorporation of intermittent arrest of part or all of the front by closure

or grain boundary blockage, while not reported in detail here, has already been

effected. With modest, feasible embellishments, crack coalescence and growth by the

formation of microcracks ahead of the crack front could also be simulated.

On the other hand, the Monte Carlo simulations are too computationally
demanding to serve themselves as predictive models for remaining fatigue lifetime in

engineering practice. They are inefficient for calculating remaining lifetimes con-
ditioned on some measurement, especially if the result of the measurement is a rare

event, such as the observation of an unusually large ur fast-growing crack. For such

applications, probabilistic models that regain computational efficiency by appropriate,
physically-based simplifications would be superior [14]. The Monte Carlo simulations

provide an excellent test of the validity of the various simplifying assumptions made in

such models.

8. CONCLUSIONS

This paper has presented realistic Monte Carlo simulations of small fatigue

cracks propagating through stochastic microstructures. The simulations are made
feasible by simple algorithms for estimating the Mode I stress intensity factor K, around

an embedded or surface-breaking plane crack of any shape. By varying a single
parameter (co), the algorithms are able to reproduce acceptably well certain known

solutions for KI for cracks of various shapes. The estimates of K, are based on dividing

an irregular crack front into a sequence of protruding and retarded segments. The

algorithms embody credible representations of the dependence of K1 on the magnitude of

such a feature and the half-angle it subtends.

The propagation of any segment of the crack front is governed by empirical or

theoretically postulated laws of growth describing the influence of its immediate micro-
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structural environment. The propagation of the entire crack front is then represented by

a system of coupled differential equations, one for each vertex on a finite mesh. It has

been demonstrated that first-order solution of this system of equations is sufficiently

accurate and fast to enable the accumulation of statistics from hundreds of simulations

at minimal cost.

The simulations have two important roles to fulfil. First, they ate a poten-

tially powerful tool for analyzing statistical short crack data, especially when the data
include information about crack shape. This potential has been illustrated by an analysis S

of the aspect ratios of small fatigue crac!.s propagating in Al 7075-T6 under uniform

cyclic loading. Such analysis provides the first direct means of establishing whether the

mechanics of growth for subsurface segments of the crack front are identical, similar, or

entirely different to those identified by observations of the surface crack tips alone. The

analysis for Al 7075-T6 demonstrated that such data can be used to test the validity of

putative laws describing microstructural effects in crack growth, since the statistics of

the crack shape are quite sensitive to both the forms of such laws and the parameters

they comprise.

The second role of the simulations is to develop bases for probabilistic models

of small fatigue crack growth and remaining lifetime prediction. The simulations allow

important statistics of short crack growth, such as the covariance between surface and

subsurface velocities of a crack front, and spatial correlation lengths for fluctuations in

growth rates, to be attributed directly to the effects of stochastic microstructure. That

this is a valid depiction of the source of variance in growth rates may then be tested

directly by comparing the predicted statistics of crack growth (e.g., crack shape and

correlation lengths) with those found experimentally. The simulations then allow the

generation of physically-based and therefore more accurate models of crack propagation,

permitting, for example, accurate calculation of the possibly nonconservative effects of

fluctuations in aspect ratio. "
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Figure Captions

1. The geometries of (a) the protrusion and (b) the retarded segment used to estimate

K at the extrema of an irregular plane embedded crack.

2. K'(a) normalized with respect to K I for a penny crack of radius s, as a function

of slt.

3. Illustrating the procedures used to define protrusions and retarded segments on an

irregular crack for the purpose of invoking Eqs. (3), (7), and (8).

4. Testing the algorithm of Eqs. (3), (7), and (8) for embedded cracks against known

solutions for embedded irregular cracks: (a) is for an ellipse with semi-axes as

marked; the shapes of the cracks in (b)-(e) are shown as insets. The results of

Mastrojannis et a] were taken from Ref. 28.

5. Testing the algorithm of Eqs. (3), (7), (8), and (9) for surface cracks against the

calculations of Gyekenyesi and Mendelson [331 for rectangular cranks in finite

rectangular bars. The insets show the dirii-nsions of the cases considered. All

values of K1 are normalized to 1c, ,where 2c is tne surface crack length. The

curve marked 'fitted semiellipse' (dotted line) in each case shows the results of

Eq. (9) for a semielliptical crack having the same moments of inertia as the

rectangular crack.

6. A typical random microstructure consisting of Voronoi polygons. I
Y. 'Ilustrating the algorithmi for advancing the crack front. The square grid marks

the discrete elements within each of which the microstructural parameters (e.g.,

size of the grain containing the elemient, or the distance of the element from the

next grain boundary) are taken to be constant.

8. Propagation of surface cracks according to the Paris Ia-, in the absence of

microstructural effects starting from a crack of aspect ratio (a) 0.25 and

(b) 0.08. The parameter p in Eq. (10) has been assigned the value 2.

9. The equilibrium shapes of cracks propagating according to the Paris Law when

(a) K I is set at each point to the value calculated for a semiellipse whose semi- ..;

axes are calculated from the second momer.t of the crack; and (b) K I is evaluated

according to the algorithm of Eqs. (3), (7), (8), and (9).
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10. Leap-frogging caused by a local minimum in the crack radius. (a), (b), and (c)

show the same portion of a crack front at successive discrete values of elapsed

cycles. The direction of advance of the crack front is indicated by the arrows.

11. A simulation of the growth of a surface crack in Al 7075-T6. The position of the

crack front is recorded at approximately equal intervals in crack size /ac, rather

than in cycles.

12. Aspect ratios of small cracks in Al 7075-T6 as functions of the crack size /ac.

The data (squares) are for cracks grown at a stress amplitude of 400 MPa. The

continuous curves show the histories of a/2c found in 10 Monte Carlo simulations.

13. The measure X2 of the degree of irregularity of the crack front, defined as the

average of deviations from the semiellipse possessing the same second moments.

Each curve traces the history of X2 for a single simulation as a function of the

crack size vac.
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1. The geometries of (a) the protrusion and (b) the retarded segment used to estimate
K, at the extrema of an irregular plane embedded crack.
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6. A typical random microstructure consisting of Voronoi polygons.
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7. Illustrating the algorithm for advancing the crack front. The square grid marks
the discrete elements within each of which the microstructural parameters (e.g.,
size of the grain containing the element, or the distance of the element from the
next grain boundary) are taken to be constant.
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8. Propagation of surface cracks according to the Paris law in the absence of
microstructural effects starting from a crack of aspect ratio (a) 0.25 and
(b) 0.08. The parameter p in Eq. (10) has been assigned the value 2.
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9. The equilibrium shapes of cracks propagating according to the Paris Law when
(a) KI is set at each point to the value calculated for a semiellise whose semi-•I axes are calculated from the second moment of the crack; and WbK is evaluated
according to the algorithm of Eqs. (3), (7), (a), and (9).
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(a) (b) (C)

//i
10. Leap-frogging caused by a local minimum in the crack radius. (a), (b), and (c)

show the same portion of a crack front at successive discrete values of elapsed
cycles. The direction of advance of the crack front is indicated by the arrows.
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11. A simulation of the growth of a surface crack in Al 7075-T6. The position of the
crack front is recorded at approximately equal intervals in crack size /ac, rather
than in cycles.
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12. Aspect ratios of small cracks in Al 7075-T6 as functions of the crack size /ac.
The data (squares) are for cracks grown at a stress amplitude of 400 MPa. The
continuous curves show the histories of a/2c found in 10 Monte Carlo simulations.
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Each curve traces the history of X for a single simulation as a function of the
crack size /ac.



INDUCTIONS FROM MONTE CARLO SIMULATIONS OF SMALL FATIGUE CRACKS

B.N. Cox

Rockwell International Science Center
1049 Camino Dos Rios

Thousand Oaks, CA 91360

ABSTRACT

The relationship between random microsctucture and the statistics of

small fatigue crack growth is illuminated by Monte Carlo simulations whose

formulation has been described previously 11]. In this paper, more detailed

analysis is presented of fluctuations in crack shape and the observed surface

crack velocity, dc/dN, using empirical laws of growth proposed elsewhere for

Al 2219-T851 and Al 7075-T6. Unusually large values of dc/dN are shown to

follow retardation or arrest of the surface crack tips while the subsurface

crack front has continued to advance. This relation implies that a physically

based model of the statistics of dc/dN must account for irregular crack shape

to predict the distribution of dc/dN and remaining lifetime accurately. The

value of even rough measurements of surface crack depth in estimating remain-

ing lifetime from nondestructive evaluation of a small crack is demonstrated.

It is concluded that the statistics of dc/dN require at least two independent

random variables for their description. It is also proposed that experimental

observations of the degree of irregularity of cracks of various sizes provide

the most direct means to date of comparing the mechanics of the growth of sur-

face and subsurface segments of the crack front.
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1. INTRODUCTION

In a previous paper [11], the formulation of Monte Carlo simulations

of small fatigue crack growth was presented. The simulations explore the

propagation under Mode I cyclic loading of small, plane, embedded or surface-

breaking fatigue cracks through random microstructures. Unlike all prior

statistical models of surface-breaking fatigue cracks, which study only the S

behavior of the visible surface tips of the crack, the simulations calculate

the advance of the entire crack front. This allows explicit study of the

dependence of the statistics of growth rates on fluctuations in crack shape.

Various aspects of this dependence will be explored in this paper.

The fluctuations in shape of small cracks are generally caused by the

random inhomogeneity of the microstructure they encounter. The fluctuations

are moderated by the tendency of the crack driving force, specifically the

Mode I stress intensity factor, KI, to restore an irregular crack front to a

smooth one. For small cracks, which is to say cracks that span only a few

grains, the fluctuations in shape can be large 12-71. Aspect ratios (depth to

surface length) of surface-breaking small cracks can range from 0.1 to 0.7,

and the crack front can depart dramatically from the smooth semi-ellipse that

is often assumed [1]. In such cases, the surface velocity 2dc/dN, where 2c is

the surface crack length and N the number of elapsed cycles of fatigue load-

ing, will show significant fluctuations that cannot be correlated with the

microstructural features visible on the specimen's surface.

In this paper, various aspects of the relationships between fluctua-

tions in crack shape, the micromechanics of crack growth, including grain 0

2
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boundary blockage, and the statistics of dc/dN will be explored more fully.

The underlying theme of the paper is to demonstrate the importance and

usefulness of both calculating and measuring details of crack shape. In the

unfortunate absence of this kind of experimental data, many of the arguments

to be presented are didactic rather than definitive analyses of particular

materi Is. One purpose of this paper is to encourage measurement of the

detailed shapes of small cracks to 1) allow a clear test of whether the

fluctuations in dc/dN under uniform cyclic loading can all be attributed to

the randomness of the microstructure, and 2) take advantage of the potential

for deducing the mechanics of microstructure-dominated crack growth from the

statistics of crack shape, as demonstrated below.

2. SUMMARY OF THE SIMULATIONS

To describe small crack propagation in a given alloy, the Monte Carlo

simulations require the specification of empirical or postulated laws defining

the influence of local microstructural parameters on each segment of the crack :4
front. These laws are generally based on microscopic observations of the %

growth of the surface tips of surface-breaking cracks and the surface manifes- -

tations of the surrounding microstructure. They may include representations #

of any or all of the phenomena believed to influence small crack growth,

including grain boundary blockage 18-14]; closure induced by fracture surface

roughness, plasticity, or oxide debris (e.g., 115] and references therein);

out of plane deflections 1161; grain orientation; and the fatigue history of

local mechanical properties 117-20]. Whether these laws are appropriate for

describing the propagation of subsurface segments of the crack as well as its

3
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surface tips is uncertain. In one case studied so far, namely small cracks in

Al 7075-T6, it seems to be so [11, but in others it might not. The Monte

Carlo simulations provide a useful test for this basic hypothesis. Differ-

ences in the laws of growth operating at and below the surface will cause con-

sistent variations in random crack shapes. However, attention in this paper

will not be focused on the question of differences in surface and subsurface

mechanics. They will be assumed for argument's sake to be the same.

The cases of Al 2219-T851 and Al 7075-T6 will be taken here as the

paradigr of small crack phenomena. Under fully reversed, uniform cyclic load-

ing, the main effects influencing small crack growth in these alloys are crack

closure and grain boundary arrest. The numerical treatment of propagation in

the presence of crack closure has been described already in 11]. The modifi-

cations required for the consideration of grain boundary arrest are presented

below. The treatment of crack initiation has also been discussed previously

I11, but some elaborations that allow more faithful representation of the

statistics of initiation are presented here in Appendix A. They are relegated

to an appendix because they are not germane to the conclusions reached in this

paper, which is concerned mainly with the statistics of propagation. The

physical laws used to model closure and grain boundary arrest in Al 2219-T851

and Al 7075-T6 are as follows.

Crack closure modifies the rate of propagation of a surface crack tip

across a grain (211 according to the empirical law used in 11l. As in I11,

this law will be generalized here to apply to the entire crack front. Thus,

the rate of advance of any point on the crack front under uniform cycling that

produces the range AKI in the mode I intensity factor is written

4
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d- = A AK2 (1-z/2r)2 H(1-az/2r)_ (1)NI

where the position variable w is measured normal to the crack front; r is the

average crack radius calculated as Vac, where a = 2vIy and c = 2/Ix , and Ix

and Iy are the moments of inertia of the crack and its mirror image about the

specimen surface; z is the distance from the crack front to the next grain

boundary; H is the Heaviside step function, whose presence signifies that

closure can arrest a crack (211; and A and a are material constants (A =

7.7 x 10-10 MPa - 2 cycle
- 1 and = 0.7 for Al 2219-T851; A = 10

-9 MPa -2 cycle - I

and a = 0.5 for Al 7075-T6; see Discussion for further comments on these

values). Note that Eq. (1) describes the acceleration of a crack tip across a

grain. In other alloys, crack tips are observed to decelerate as they trav-

erse grains, but the reader will see that the qualitative conclusions reached

in this paper ought to apply equally to such materials.

According to observations of surface crack tips, the duration of

arrest of small cracks in Al 2219-T851 and Al 7075-T6 at grain boundaries

depends on the applied stress, the surface crack length, and the size and per-

haps the orientation of the grain ahead of the arrested crack tip (e.g., [9,

21, 221). Measurements of striation patterns of cracks broken open after

fatigue (23] and cracks revealed by destructive sectioning [121 have shown

that subsurface segments of cracks can also be arrested at grain boundaries.

While doubt persists over the physics of grain boundary arrest even in the

much studied Al 2219-T851, detailed phenomenological laws have been deduced

from experimental data to describe the dependence of the duration of the
I

arrest on the controlling factors [9]. The applied stress and the orientation

5
J9177D/sn

Lm, \'I



of the next grain are effective through the resolved shear stress, r, and the

size of the next grain is represented by the maximum slip distance D. The

duration of arrest is also modified by the existence of a cutoff crack length

2co, above which arrest no longer occurs. In Al 2219-T851, experimental

observations suggest that 2co is related to a critical value aK of the local

value of &KI 191. Thus, in fully reversed loading, for example,

2
2co c Cmax, where amax is the maximum stress amplitude. For Al 2219-T851,

AKo -13 i.1m1/2 Oy, where ay is the bulk cyclic yield stress 191. Since it has

been assumed here that these laws are equally valid for subsurface segments of

the crack, the surface crack length has been replaced by twice the average

radius of the crack, 2r.

The duration of arrest of a vertex is counted down by a parameter B,

which has value zero when the vertex is first arrested and unity when it is

about to resume propagation. The law for the rate of change of a is 191

d -/Yo (0)2 ay0 < Co (2)

TN1-c/c 0 y y
0> C0

where the slip distance D is approximated for simplicity by the square root of

the area of the next grain and H is again the Heaviside step function. The

resolved shear stress T is close to /2Omax' since the high symmetry of Al

ensures that one slip system will be at approximately 450 to the applied

stress. The empirically determined parameter To is believed to represent an

intrinsic back stress resisting the development of slip in the grain ahead of

the crack tip 191. It has the value 0.38 ay in Al 2219-T851, where ay is the

6
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V dw j

bulk cyclic yield stress. The parameter y is another empirically determined
material constant, with the value 6.0 x 10- 5 Jm3/2 cycles- I for Al 2219-

T851. The change in B is calculated for each blocked vertex at each itera-

tion. If the new s exceeds unity, the status of the vertex concerned reverts

to propagating.

The drivina force AKI has been estimated as in Ill at each point on

the crack front, taking account of the crack's highly irregular shape. As

described in [i, the crack front in a simulation is represented by a sequence

of vertices separating small, straight line segments. The details of the

random microstructure are stored for the duration of the simulation of one

crack's history on a fine square grid. The microstructural environment of any

vertex on the crack front can be found at any time by identifying the nearest

point on that grid. One attribute of the grid point will be the grain in

which it lies. The arrival of a vertex of the crack front at a grain boundary

is signaled by a different grain being attributed to the nearest grid point

from that on the last iteration. When that occurs, the vertex is labeled as

being blocked, and the beginning of its term of arrest is noted. Thus, every

vertex on the crack front is individually flagged as blocked or propagating.

None, some, or all of the vertices may fall into either category at any time.

If at least one vertex is propagating at any time, the number of

elapsed cycles in the next iteration is chosen to restrain the maximum advance

of any vertex to a prescribed limit. This controls the step size in the

numerical solution of the underlying, coupled first-order differential equa-

tions defining the propagation problem. If all vertices are blocked by grain

boundaries, then a and do/dN are compared for all vertices, and the vertex

7
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that will first resume propagation is identified. The number of cycles

required for this is calculated from Eq. (2) and added to the running total of

elapsed cycles. On the next iteration, the newly freed vertex will propagate

again.

3. GRAIN BOUNDARY ARREST AND FLUCTUATIONS IN SHAPE

The general pattern of crack propagation observed in the simulations

in the presence of grain boundary blockage is qualitatively similar to that

found when crack closure, e.g., induced by plasticity, varies randomly around

the crack front [1]. The crack front is made highly irregular as some seg-

ments are blocked by grain boundaries, while others continue to propagate.

Since a blocked segment becomes retarded relative to the rest of the crack, KI

is amplified there, and when propagation resumes it is anomalously rapid.

The presence of the factor T-To in Eq. (2) causes the fraction of

time a crack or its various segments spends in arrest to increase dramatically

as T approaches r0 from above (if T < To, grain boundary arrest is permanent).

Thus, the relative strength of grain boundary arrest increases with decreasing

0max" The increase in the irregularity of the crack front due to grain bound-

ary arrest can therefore be demonstrated by comparing simulations for high and

lcw values of ama x. Figure la shows the case amax = 0.7a y and Fig. lb the

case amax = 0.94oy in a simulation of a crack growing in Al 2219-T851 under

fully reversed loading. The crack front is shown in each case at intervals

marking approximately equal incrpments in the !Ve-agP crdck radius. The

intervals are unequal and irregular because the increment of crack growth on

each iteration depends on stress-dependent details of the crack's shape.

8
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Therefore, the sequences in Figs. la and lb are not immediately equivalent,

even though the same pseudo-random microstructure has been used in both cases,

but one can see that the crack front is significantly more irregular in Fig.

la than in Fig. lb. Most of the irregularities are coincident with grain

boundaries. The smallest ripples are caused by the discreteness of the grid

on which the microstructure is recorded. The irregularity that persists at

Gmax = 0.9 4cy, when crack arrest at grain boundaries is very brief, can be

shown to spring mainly from the random effects of the microstructure on crack

closure during periods of propagation.

The irregularity of the crack front can be quantified in various

ways. One convenient measure is

n n

<XI(,r)> a n J=1 XJ(er) n 11-r.(e,r)I<r .(0, (3)
jl

where r.(e,r) is the radius of the jth crack front at angle e when the crack's3!

size is r. The angle e is defined in Fig. 2. The sum in Eq. (3) is over all

simulations (cracks) in a Monte Carlo ensemble and the square brackets <...>

denote an ensemble average. The term <rj(e,r)> represents the ensemble

average of rj(er) over the same set of Monte Carlo simulations:

n
<r (9,r)> = '  r(9,rj ) (4)

(The definition Eq. (3) of irregularity is different to that pre-

sented in 1Il, where <rj(e,r)> was replaced by the radius at angle e of the

9
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semi-ellipse of best fit. Equation (3) is superior because it allows

<X(e,r)> to be evanescent as the crack grows very large and the influence of

the random microstructure diminishes. Using the definition of [11, this does

not happen. For large cracks, <X(e,r)> as defined in [1] tends to a constant,

which merely reflects the fixed departure of the equilibrium crack front from

the semi-ellipse of best fit. The true shape of the equilibrium crack front

in given by <r.i(e,r)>.)

The angle dependence of <X(e,r)> is shown in Fig. 2a for simulations

similar to those of Fig. 1 and at the stress level amax = 0.95ay. The irregu-

larity is seen to be largest at a = 90o, which corresponds to those segments

of the crack propagating down into the specimen. Since the grain structure is

highly nonequiaxed with depth/width ratios of 0.15 for the average grain, the

downward propagating crack front encounters crack boundaries with relatively

high frequency. This causes greater fluctuations in rj(e,i) in this direc-

tion. The dominant trend of <X(e,r)> with increasing crack size is that it

decays approximately as the mth power of r, with m = 1.5 for max  0.9 50y.

The trends in <X(e,r)> for small r are affected strongly by the initiation

model used in the simulations. Since all cracks began as semicirsles with

2c = 20 um in the simulations of Fig. 2, <X(e,F)> is zero at r = 10 Jim. The

position of the maximum in <X(e,r)> for 6 = 900, which occurs at r t 30 Pm,

indicates the range of influence of the choice of initiation model.

The stress dependence of the degree of irregularity, which has

already been seen qualitatively in Fig. 1, is shown quantitatively in Fig. 2b.

For this figure, the average <X(r)> of <X(e,r)> over all angles has been

calculated for omax = 0.95ay (the same simulations as in Fig. 2a) and amax -

10
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0.7a y For the latter stress level, only 66 simulations were executed. The

stress dependence of <X(r)> is just as expected, with the lower stress marked

by much greater irregularity because of the stronger effect of grain boundary
-0.8

arrest. For amax = 0.7oy, <X(r)> falls off approximately as r

The error bars in Fig. 2 indicate the root mean square deviation of

<X> (dropping the arguments e and r from the notation), which is given by

(e.g., 1241)

2 /n (5)
<X>

where n is the number of simulations. The errors o<X> are functions of the
crack size r in Fig. 2, because both 2 and n depend on r. n depends on r

for large r because the simulations ran for a given number of iterations,

with the amount of growth on each iteration and therefore the maximum r

achieved being random.

Even though <X> is small, there is significant difference between the

cases amax = 0.7Oy and 0max = 0.g40y. The ripples on the crack front re-

flected in X.(e,) measure only - 10 um on a 300 pm crack, and the practice of

most experimentalists would be to ignore them and declare the crack a smooth

semi-ellipse. Nevertheless, they are presumably measurable. Furthermore, it

should not be necessary to make the measurements for 100 cracks. Since

O<X> a n-I2 , it can be seen from Fig. 2 that the dependences on angle e and

stress shown there should be borne out by measurements on as few as ten

cracks. Unfortunately, such measurements are not yet available.

J91770/sn



I

4. SUBSURFACE ARREST AND THE SURFACE VELOCITY

Minima in the surface velocity, dc/dN, of small, surface-breaking

cracks are not always coincident with the arrival of one of the surface crack

tips at a grain boundary. Lankford [231 reported the near-arrest or arrest of

surface crack tips in Al 7075-T6 far from grain boundaries. The cracks he

observed had initiated at fractured surface inclusions, which were typically S

less than 10 Pm across. They propagated until the surface length was 30-

40 um, whereupon they suffered a steep decline in velocity, with some becoming

essentially nonpropagating. All this occurred far from the boundaries of the

grain of initiation, which was - 100 um across.

Since the grains in that Al 7075-T6 specimen were flat and approxi-

mately 18 pm deep, the possibility naturally arises that the surface velocity

dc/dN is reflecting the status of subsurface segments of the crack front. For

a semicircular crack, the observed minima in dc/dN would coincide approxi-

mately with the arrival of the subsurface crack front at the first subsurface

grain boundary. Since striation markings clearly indicated crack arrest at

the subsurface boundary, one might speculate [23] that dc/dN would be reduced

as the crack tended to maintain its semicircular aspect ratio.

The present Monte Carlo simulations demonstrate that this is unlikely

to be the case. Figures 3a and 3b show simulated striations left by a crack

that is arrested at a subsurface boundary in Al 7075-T6. The crack in Fig. 3a

has recently been arrested. In Fig. 3b, the effects of arrest are manifest in

the jog of each striation at the subsurface grain boundary, and the left

surface crack tip has just reached a surface grain boundary. The record of b

12
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dc/dN for the same simulation appears in Fig. 3c, with the points A and B

marking the positions corresponding to the last striation in each of Figs. 3a

and 3b. There is obviously no minimum in dc/dN at point A, nor was that found

to be the case in any of many similar simulations at various stress levels.

There is, of course, a dramatic drop in dc/dN just before point B, when the

left surface tip reaches a grain boundary.

It is easy to see why there is no minimum in dc/dN at point A in Fig.

3c from the mechanics embodied in the simulation. The transmission of infor-

mation about the deepest point of the crack to the surface tips is via the

dependence of K, on the crack's shape. Wher the deepest point is arrested,

the crack becomes shallower. The canonical expressions of Newman and Raju

[25-271, which are part of the estimated KI in the simulations [11, then yield

smaller values of KI at the surface tips. But this is a gradual decrease, and

dc/dN is not significantly affected unless the fluctuation in subsurface

velocity (i.e., the crack's arrest there) persists until 2c approximately

doubles. Thus one has a general and mildly surprising induction from many

Monte Carlo simulations: that there is only weak correlation between short-

lived fluctuations in dc/dN and in the velocity of the deepest point on a

surface-breaking crack, even for cracks spanning less than one grain. This

extends and generalizes a conclusion reached previously for model-based analy-

sis of the statistics of dc/dN for surface cracks spanning several grains in a

Ti alloy 1281.

When velocity fluctuations around the crack do persist long enough

for the aspect ratio a/2c to be severely distorted, fluctuations in dc/dN will

be found to be correlated with fluctuations in a/2c. This point will be

elaborated below.
13
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The minima in dc/dN reported by Lankford require another explana-

tion. Perhaps they mark a change in the mode of propagation of the surface

tips of the crack, involving a discontinuous change in closure stresses or in

the crack driving force, the latter perhaps because of a microscopic crack

deflection.

5. QJALITATIVE NATURE OF THE STATISTICS OF dc/dN

The law of propagation of surface tips of which Eq. (1) is a general-

ization for all points on the crack front has one feature in common with most L
a.

micromechanical models in the literature that describe the influence of micro-

structure. The effect of the microstructure in Eq. (1) is to reduce the

velocity of the crack from that which it would have had in the absence of the

factor (1-az/2i). There is therefore an upper bound to dc/dN as it is pre-

scribed by Eq. (1) for a given value of the applied KI (or AKI). This same

feature is found in the popular theory that small cracks grow faster than long

cracks at the same applied AKI because plasticity-induced closure is absent or

relatively small in small cracks (e.g., [151 and references therein). (This

model is not to be confused with that underlying Eq. (1), which considers the

restriction of crack tip opening displacements by back stresses associated

with the constraint of the crack tip plastic field by grain boundaries 1211.)

An upper bound to dc/dN is also present in models of roughness-induced closure

(e.g., [29-311). Similarly, the effective crack driving force for a kinked,

curved or deflected crack is lower than that for a plane crack 116,321.

Since most workers observe and model just the surface trace of a

small, surface-breaking crack, the applied KI is calculated from the surface

14
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length 2c under the assumption that the crack is semi-elliptical with fixed

aspect ratio. At constant stress, KI is therefore a smooth, monotonically

increasing function of 2c, and so therefore is the upper bound to dc/dN in

models like Eq. (1). The effect of these assumptions on the statistics of

dc/dN is to make them unrealistic. This was demonstrated by the simulations

in the following way.

5.1 Case A - Modeling the Surface Crack Tips Onl

The customary analysis of the statistics of dc/dN was emulated by

calculating the propagation rate dw/dN according to Eq. (1) and da/dN accord-

ing to Eq. (2) for the surface tips only. The rest of the crack was assumed

to be semicircular, and K1 for the surface tips was calculated according to

the canonical expressions of Raju and Newman f25-271.

Each simulation generates a sequence (2ci j , Nij, i = 1,2.... ) of

surface crack lengths and elapsed cycles. For the simulation to be accurate,

the sequence must be much denser than the equivalent experimental data.

Therefore, in the interests of obtaining statistics as much like experimental

statistics as possible, the sequence (2ci,j , Ni'j, i = 1,2....) for each crack

was replaced by the sequence (2c, iN, i = 1,2...), where No is an interval

of elapsed cycles that might separate experimental measurements of crack

length, and 2c i j is the value of 2c after iNo cycles, found by linear inter-

polation over (2ci j , Ni,j, i = 1,2....).

Two density functions for the surface velocities were then con-

structed from the sequences (2 ci, j , iNo, i = 1,2...) for all cracks in an

15
J9177D/sn



-'.

ensemble. The first, hc(V)dV, refers to the probability that a crack of

surface length 2c will have normalized velocity

dc/dN

AAK (c) 6

lying between V and V + dV, where AKi(c) is the nominal stress intensity fac-

tor for the semicircular crack of surface length 2c. The denominator in Eq.

(6) is just the upper bound to dc/dN at crack length 2c according to Eq.

(1). The density hc(V) was approximated by

hc(V) = 1 22(7)
n = 62+ (V-V) 2

where the sum is over the n simulations in an ensemble, and Vj is the nor-

malized velocity found for the jth simulation at crack length 2c:

V.= ci+ij i'j (8)J No  (8)

0

where 2c 5 2c < 2c The Lorentzian peak width 6 was set to 0.02 in
i'j S~~'T

the cases reported below. In fact, when dealing witn the normalized

velocities V, it is convenient to consider the average h of the densities h ,c c
for several crack lengths 2c. When the same procedure is carried out for .."

limited experimental data, smoother density functions are obtained for such an

average than wuuld be obtained for one crack length. Of course, the density

hc(V) of normalized velocities will be slightly different for different given

crack lengths. However, when the average is limited to lengths in the small

16 I
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crack regime, the points to be made in this section are qualitatively

unaffected. The subscript c is retained in the notation hc to emphasize that

it still represents the result of sampling dc/dN for cracks of certain

specified lengths. For a sum over lengths 100, 120, 140, ..., 300 um, the

density hc(V) is shown in Fig. 4a for the cases amax = O.7ay and amax =

0.96ay, with the interval No set to 2000 cycles. (The median number of cycles

for a crack to grow to 2c = 300 pm when only the surface tips were modeled

explicitly was - 90,000 when amax = O.7oy and - 30,000 when amax =0 .96ay.)

The upper bound to dc/dN is manifested in the fact that hc(V) = 0 for V > 1.

(The slight tails of hc(V) that penetrate out of the interval 10,11 are just

the tails of the Lorentzian peaks in Eq. (7)).

The second density function considered for the surface velocities,

denoted hN(V)dV, refers to the probability that a crack will have normalized

velocity V lying betwen V and V+dV when N cycles have elapsed from the initi-

ation event (i.e., from the beginning of the simulated propagation). In

analogy to hc(V), hN(V) is estimated from a Monte Carlo ensemble as a sum of

Lorentzian peaks, with Vj in the analogue of Eq. (7) now being the normalized

velocity found for the jth simulation after N cycles. Once again, a smoother

density function (more information) can be obtained by averaging the functions

hN(V) for various values of N, with the resultant density function

denoted hN(V).

The density hN(V) is shown for 0max = 0.7ay and amax 0.9 5 oy in Fig.

4c, with the average of hN(V) in this case being over values of elapsed cycles

that are multiples of 5000 up to 50,000. As for hc(V), hN(V) was estimated

from the time-averaged sequences (2c ij, iNo, i = 1,2,...) with No = 2000
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cycles. Like hc(V), hN(V) is confined to the interval [0,11, apart from the

small excursions of the tails of the Lorentzian peaks in the approximation

analogous to Eq. (7).

The densities h (V) and hN(V) show one important qualitative

difference: hc(V) is biased strongly towards higher values of V. Low values

of V are weakly represented in hc(V) because the crack does not grow much when

V is small. In a plot of V vs c for a single crack (or simulation), low

values of V are accordingly found to occur over relatively short intervals of

c. If one samples V at a specified crack length 2c, it is therefore dispro-

portionately likely that a high value of V will be obtained. This effect is

absent in h When sampled after a prescribed number of elapsed cycles, low

values of V, including V = 0 (arrested crack), are well represented. Thus

hN shows a significant peak at V = 0, corresponding to the arrest of both

surface crack tips. When 0max = 0.7oy and grain boundary arrest is moremax y
prevalent, there is even a small peak discernible at V = 0.5, corresponding

to the arrest of just one surface crack tip. This distinction between

hc and hN (or hc and hN) is important to bear in mind when analyzing experi-

mental statistics of grain boundary blockage (see Discussion).

5.2 Case B - Modeling the Whole Crack Front

Now consider the density functions hc and N found for the surface

velocities dc/dN when the simulations trace the propagation of the whole crack

front rather than the surface tips alone. The densities in this case (Figs.

4b and 4d) are different in several important ways.

18
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First, the normalized velocity is no longer bounded by any upper

limit. Both hc and hN show significantly many cracks propagating faster than

the nominal upper bound of unity. These high values of velocity can all be

traced in the present simulations to high values of AK, at one or both of the

surface crack tips. High values of AKI occur at any point on the crack front

that is retarded relative to the rest of the crack front [1]. Thus high values

of dc/dN generally follow a period of arrest of either crack tip. When the

surface tip finally breaks free from the grain boundary or other microstruc-

tural feature that arrested it, it is whiplashed by the subsurface crack

front, which has grown ahead of it during its arrest.

The second noteworthy difference between Figs. 4b and 4d (whole crack

front) and Figs. 4a and 4c (surface tips only) is in the probability of arrest

of the surface tips. This is especially visible in hN, which has a much

larger peak near V = 0 in Fig. 4c than in Fig. 4d. In other words, with all

other modeling details equal, the surface crack tips are much less likely to

be found in a state of arrest after given elapsed cycles when the whole crack

front is simulated. This is because the duration of arrest is much less when

the subsurface crack front is modeled. The subsurface crack front is normally

found to grow ahead of an arrested surface tip, so that the average crack

size r continues to increase, reducing the time of arrest in accord with Eq.

(2). This, of course, negates the validity of using values of the parameters

Y9 r0 and co in Eq. (2) that have been deduced from measurements of surface

crack tips alone, with AK, calculated as for a semicircular crack 19]. It

even raises doubts about the functional form of do/dN. In principle, a sta-

tistical analysis of surface velocity data based on modeling the entire crack
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front should be used to determine laws such as Eq. (2). This has not been

done in this paper, which is concerned only with trends and concepts. Even if

the assumed functional form of dB/dN was found to be in error, none of the

conclusions reached here would be affected materially.

5.3 Experimental Densities

For qualitative comparison, densities hc and hN were constructed from

unpublished raw data of M.R. James and W.L. Morris for Al 2219-T851. They are

shown in Figs. 5a and 5b. Because of the sparseness of the data, even densi-

ties averaged over different values of crack length or elapsed cycles are

imperfectly defined. However, it is quite clear that the densities in Fig. 5

are similar to those of Figs. 4b and 4d, exhibiting no indication of an upper

bound to V.

The importance of the high velocity tail of hc or hN far exceeds its

weight relative to the rest of the density function, because the fastest S

cracks are very likely to be the fatal ones. One must conclude that physi-

cally based models of remaining lifetime ought to include some representation

of this intrinsically three-dimensional effect. The alternative is to apply a

purely statistical analysis of surface velocity data, as exemplified by the

approach of Bogdanoff and Kozin [331. Such an approach does not provide the

satisfaction of attributing statistical fluctuations to micromechanical S

origins, and on account of this, it does not share the same potential for

accuracy.
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6. CRACK SHAPE AND REMAINING FATIGUE LIFETIME

Correlations between crack shape, surface velocity dc/dN, and remain-

ing fatigue lifetime were studied qualitatively for simulations identical in

form to those reported in the preceding sections. Parameter values were

chosen appropriate to Al 2219-T851. The mutual dependence of dc/dN and the

aspect ratio a/2c, where a is the deepest point on the crack front, is shown S

in Fig. 6a for amax = 0.9 5ay. Each point in Fig. 6a represents simultaneous

values of the surface velocity dc/dN (where the circumflex again indicates an

average over pseudo-measurement intervals, but now of length 1000 cycles) and

a/2c for each crack in 97 simulations when 2c = 100 um. The correlation

between dc/dN and a/2c is imperfect, as one expects, but there is a clear

trend that dc/dN increases with a/2c. This is highlighted by the solid line

in Fig. 6a, which was obtained by linear regression analysis. The two dashed

lines indicate the 95% confidence interval for the slope of the solid line.

Note that the distributions of both dc/dN and a/2c in Fig. 6a are natural, in

the sense that when 2c = 100 pm, negligible memory is left of the initiation

model, in which 2c was initially 40 um.

One might expect correlations between dc/dN and a/2c to be the prod-

uct of two competing factors. On the one hand, when a/2c is large, KI is

enhanced at the surface crack tips, and so dc/dN is enhanced. On the other

hand, according to the physical basis of the laws for dc/dN in Al 2219-T851 or

Al 7075-T6, a/2c probably became large because the surface crack tips were

retarded. Given a large value of a/2c, one might expect to find sometimes

that the surface tips are still retarded and exhibiting slow growth. Figure

6a reveals that the latter effect is not dominant.
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The influence of crack shape on remaining lifetime was assessed by

calculating the cycles Nr taken for each crack to grow from 2c = 100 um to

2c = 300 um, the latter representing a fatal flaw. The fatal flaw could

obviously be defined to be a bigger crack if desired, but since dc/dN is pro-

portional to at least the first power of c, there would be no qualitative

effect on the conclusions to be reached here.

Figure 6b shows Nr for each simulation in Fig. 6a as a function of

the value of a/2c when 2c = 100 um. One sees the expected trend that Nr

decreases with a/2c, with the solid line in Fig. 6b again being the line of

best fit. The narrowness of the 95% confidence interval for the slope of this

line shows that variations in a/2c are the source of most of the variations in

Nr. The most likely slope indicates that Nr is most likely to be reduced by

30-40% when a/2c = 0.8 relative to Nr for the median a/2c = 0.55. In applica-

tions of a policy of damage tolerance based on periodic inspections of a part

in service (retirement for cause), there is obviously great merit in estimat-

ing a/2c as well as 2c at each inspection.

Much of the reduction in Nr with increasing a/2c is attributable to

the fact that dc/dN tends to be higher when a/2c is higher. Thus there is

also strong correlation between Nr and dc/dN when 2c = 100 pm (Fig. 6c).

However, there is a weaker effect in Fig. 6c than in Fig. 6b, which is pre-

sumably because dc/dN is affected by local, near-surface fluctuations in

shape, which are short-lived and have little influence on Nr for a growth

increment of 200 Pm.
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To illustrate the effects on Nr of departures of the crack's shape

from semi-elliptical, the following special simulations were performed. Semi-

elliptical cracks of surface length 2c = 100 pm were initiated with depths

uniformly distributed from zero to 100 um (a/2c uniformly distributed between

0 and 1). Growth was then followed to 2c = 300 um. The correlation between

the initial dc/dN and the initial a/2c (i.e., at 2c = 100 pm) is shown in Fig.

6d. Figure 6d differs from Fig. 6a in that a/2c now spans a greater range and

the highest values of dc/dN are absent, because there are no locally retarded

surface tips, a typical feature in cases of high a/2c, that can be suddenly

accelerated. Figures 6e and 6f show the correlations between Nr and the

values of a/2c and dc/dN at 2c = 100 jm. There are now many instances of

cracks that existed at 2c = 100 pm not propagating to 2c = 300 pm or getting

there very slowly, which are represented by the points lying either to the

upper left of Figs. 6e and 6f or off the scale. This part of the distribution

has no analogue in Figs. 6b and 6c, because in that case the cracks at 2c =

100 pm had already grown from 2c = 40 pm: the nonpropagating or very slow

cracks did not appear in the statistics of Nr. For the current purposes, the

most significant part of the distribution in Figs. 6e and 6f is for a/2c > 0.2

or dc/dN > 0.02 pm/ cycle. There the trends are similar to those of Figs. 6b

and 6c, but with the correlations between Nr and a/2c or dc/dN being weaker.

This is clearly an effect of crack shape. If one estimated Nr using the

measured distribution of a/2c at 2c = 100 pm and KI for the surface tips of a

semi-elliptical crack, one would significantly underestimate the reduction of

Nr for unusually deep cracks. An accurate estimate requires an account of the

irregularity of the cracks, especially the relative retardation of the surface

tips that often accompanies large values of a/2c.
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The correlations of Nr with dc/dN and a/2c are also affected by the

applied cyclic stress amplitude, amax . Figures 6g, 6h, and 6i show the same

information as in Figs. 6a, 6b, and 6c, but at amax = 0.7a At the lower

stress level, the cracks are much more irregular (Fig. 2b). The correlation

between dc/dN and a/2c is less definite (Fig. 6g), because near-surface

fluctuations in shape, which are not directly correlated with a/2c, are much

larger. This is indicated by the wide 95% confidence interval for the slope

of the line of best fit in Fig. 6g. The correlations between Nr and a/2c

or dc/dN (Figs. 6h and 6i) are still comparable to those for amax = 0.95ay,

but the trend is mixed in with a much wider scatter in Nr-

7. DISCUSSION

7.1 On Statistics and Mechanics

The nonexistence of experimental data on the details of crack shape

has frustrated the demonstration of the full power of the Monte Carlo simu-

lations of [1]. It is hoped, however, that sufficient stimulus has been

provided for such experimental measurements to be made. Various fundamental

aspects of the mechanics of small cracks could be thereby elucidated. In

particular, differences in surface and subsurface mechanics could be quanti-

fled. Models of the role of microstructure or environment could be tested by,

for example, determining the irregularity measure X at different stress

levels, in different microstructures, and in different environments. The

effects of isolated overloads, an area of much doubt, could be measured in

terms of ensuing, consistent variations in crack shape. If, for example, an
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overload causes the greatest changes in the plastic zone in large grains,

which are known to be more microplastic in Al alloys [17,181, then this should

lead to distinctive variations in crack shape.

The Monte Carlo simulations have made a major contribution to decid-

ing whether fluctuations in the crack properties such as the surface velocity

dc/dN can be attributed to fluctuations in the microstructure. This is a

prerequisite to physically based and potentially more accurate models of

fatigue lifetime. However, further work on this question remains necessary.

Data for many more cracks must be analyzed, and compared quantitatively with

the output of simulations.

7.2 On Predicting Lifetime

The Monte Carlo simulations bear out a fundamental and very important

fact of small fatigue crack growth: more than one independent variable is

required to account successfully for the statistics of growth. It is not

possible to construct an accurate model of fatigue crack growth as a sto-

chastic process in one dimension, e.g., the surface crack length 2c, its depth

a, or its total area. If, for example, the crack length 2c is chosen as the

first independent variable, then there remains significant information about

the state of the crack contained independently in its shape. This information

is sufficient, if calculated or measured, to change basic predictions such as

of remaining lifetime by significant amounts. Of course, crack shape (e.g.,

a/2c) is not the only possible choice for the second variable. Since the

crack shape is a manifestation of interactions of the crack with the micro-

structure, some direct measure of the microstructure itself at or near the
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crack front might serve equally well. Such a physically based, two-dimen-

sional, probabilistic model has already been formulated 1341 and illustrated

by a description of roughness-induced closure in a Ti alloy [281.

The necessity of a second independent variable can also be shown by

studying the covariance of experimentally measured crack properties, usually

the surface crack velocity, dc/dN, but also, for example, the degree of

irregularity, X. A correlation length for fluctuations in dc/dN 134] or X [1]

may be defined and evaluated by the analysis of experimental data [28,35].

When a physically based probabilistic model has been constructed, this process

can also assist in identifying the mechanics of failure [281. The correlation

lengths are closely related to the spatial scale of the underlying random

microstructural factors that cause fluctuations in growth.

The importance of correlation lengths and the necessity of formulat-

ing two-dimensional rather than one-dimensional stochastic models to describe

crack growth can of course be demonstrated without attempting to understand

the underlying physics. In particular, Bogdanoff and Kozin have reached this

same conclusion by purely mathematical analysis of the statistics of crack

growth [361. It is interesting that their analysis was of long crack data: *

one is led to suspect that longer-range material inhomogeneity plays the same

role for long cracks that grain structure plays for small cracks. Bogdanoff

and Kozin's two-dimensional stochastic model 1371, while having a different

formulation, is functionally similar to our own model, which was proposed in

the context of small cracks 134].
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One of the most important goals of physical models of small crack

growth is to calculate the shape of the short-life tail of the distribution of

fatigue lifetimes. This regime of the distribution, which is of course the

most important in any engineering application in which failure must be

avoided, is especially vulnerable to miscalculation by nonphysical statistical

analysis of fatigue crack growth data. It has been demonstrated here that

qualitatively realistic distributions of dc/dN are produced by the Monte Carlo

simulations. Although this has not yet been shown quantitatively, this sug-

gests the possibility of accounting for the first time for fluctuations in

dc/dN under uniform loading conditions in terms of fluctuations in microstruc-

ture. Such a demonstration would open the way for the first physically based,

accurate calculation of the short-life tail of the lifetime distribution using

the Monte Carlo simulations.

It has been shown that there is no upper bound to the surface veloc-

ity dc/dN during fatigue at constant cyclic stress amplitude, in contradiction

of previous physically based models that treat only the motion of the surface

crack tips. However, it may still be that there is a lower bound, at least in

Al 2219-T851 and Al 7075-T6, to the cycles required for propagation over a

given, large increment in 2c. Values of the normalized velocity V exceed

unity only when one or both surface crack tips is relatively retarded. V

returns to values less than unity when the crack front is locally smooth

again. The net effect over long intervals of growth is that the integral of V

may remain bounded. Unfortunately, sufficient experimental data to test this

hypothesis were not at hand at the time of writing.

27

J9177D/sn

6&&s IN U %



7.3 On Using KI and the Treatment of Plasticity for Small Cracks

The characterization of the crack driving force by the mode I stress

intensity factor KI is contentious for small cracks, especially those spanning

only one or two grains. In many alloys, large-scale yielding around the tips

of the smallest cracks calls into question the significance of a cracking

driving force that is calculated according to elastic fracture mechanics.

Unfortunately, there has been no clearcut experimental confirmation or refuta-

tion of the use of KI to model the mechanics of growth. Discussion of this

question has been confined to theoretical conjectures. However, it should be

noted that nearly all of the simulations presented above are of cracks growing

from 2c - 100 Pm to 2c - 300 um. Over this interval the cracks span 2-5

grains on the surface and 3-10 grains in depth. It is very likely that the

mechanics and statistics of cracks in this regime can be well represented by

some AKeff that incorporates plasticity-induced closure as a modification to

AKI. Note furthermore that laws of propagation such as Eq. (1) describe dis-

continuous crack mechanics. The plasticity represented implicitly therein is

constrained by grain boundaries, and may bear no similarity to the deformation

in the plastic zone of a long crack.

The analysis of Section 3, in which growth was studied within a

single grain, is more problematic. However, the point made there was that the

crack driving force for the surface crack tip, characterized in this work by

the AKeff implicit in Eq. (1), is slow to respond to the arrest of a subsur-

face segment of the crack. The crack continues to grow along the surface only ,.

weakly impeded, and 2c doubles before significant, gradual deceleration

occurs. Even if the crack driving force was calculated as a J integral or
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taken to be proportional to the crack opening displacement or the local

plastic strain range, this result would very likely remain true.

In the model equations used in an illustrative way in this paper,

plasticity-induced closure is described as depending on the local microstruc-

ture as well as the average crack radius. One might suspect that it should

also depend on position around the crack front, since the constraints on

plastic deformation at the free surface are quite different from those at the

bottom of the crack. The simpler view was maintained in this paper for want

of any experimental or theoretical statement of a superior law of growth.

This failing should not be considered inherent to the simulations. On the

contrary, the results of this paper are an explicit guide to the experimental

verification and assessment of differences between surface and subsurface

mechanics, including plasticity. One of the major points of this paper has

been to show how measurements of the statistics of crack shape, when inter-

preted by Monte Carlo simulations based on various hypothetical laws, could

resolve such questions. A prime feature of the simulations is that laws of

growth can be substituted freely to enable such a study.

7.4 On the Reporting of Experiments

The substantial difference between the density of crack velocities

for cracks of given length, hc, and after a given number of elapsed fatigue

cycles, hN, has been demonstrated. That only the latter reveals clearly the

statistics of crack arrest and deceleration by closure is commonly overlooked

in the literature. Note especially that when dc/0N is presented as a function

of nominal AKI for data taken at constant stress amplitude, this is equivalent
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to presenting dc/dN for given crack lengths. The distribution of data on a

dc/dN vs AKI plot will therefore follow a family of densities like hc.

According to the foregoing, such a presentation obscures important information

about the probability of a crack being arrested after a given number of

cycles. It would be d great service to those interested in statistical

analysis if raw data of the form (ci,N i, i = 1,2...) were also presented. The

low velocity tail of densities like hN could then be constructed with

accuracy, and the mechanics of grain boundary arrest, crack closure, etc.,

illuminated.

8. CONCLUSIONS

1. The irregularity in shape of a small crack contains valuable information

about the mechanics of small crack growth.

2. Minima in the surface velocity dc/dN cannot be correlated with arrest of

the deepest part of the crack front at a subsurface grain boundary.

3. Instantaneous values of dc/dN, or values averaged over reasonably short

measurement intervals, are strongly affected by crack irregularity.

This could affect significantly the interpretation of experimental

observations of surface crack growth in relation to the local micro-

structure.

4. The consideration of detailed fluctuations in the shapes of small cracks

changes qualitatively the statistics of the surface velocity dc/dN,
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which are then more consistent with experiment. This implies that an

adequate probabilistic model of the statistics of dc/dN must be based on

at least two independent variables, rather than one, e.g., the surface

crack length 2c and the crack depth a, rather than 2c alone.

5. Estimates of the crack depth in an NDE inspection of small cracks can

significantly affect the estimated remaining fatigue lifetime. A

detailed account of crack shape and irregularity is required to calcu-

late accurately the penalty associated with a relatively deep crack.

6. Presentation of experimental data in the form dc/dN vs AK, obscures the

statistics of slow and arrested cracks, frustrating statistical analysis

of the mechanics of crack arrest and closure.
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FIGURE CAPTIONS

Fig. 1 The increase in irregularity of the crack front accompanying an

increase in the duration of arrest at grain boundaries.

Fig. 2 (a) The irregularity measure <X(e,r)> for various angles 6, which is

defined in the inset. (b) The irregularity measure <X(r)> averaged

over all angles e for two stress levels.

Fig. 3 A typical simulated history of a crack that suffers arrest at a

subsurface grain boundary. The striations in (a) and (b) show the

position of the crack front at generally unequal intervals of elapsed

cycles. The surface velocity dc/dN is shown in (c) as a function of

half the surface crack length, 2c.

Fig. 4 The probability density h c(V) that a crack has normalized surface

velocity V when its length is given; and hN(V) that it has normalized

velocity V after a given number of elapsed cycles. (a) and (c)

show hc and hN when the propagation of the surface crack tips only is

simulated, and (b) and (d) when that of the entire crack front is

simulated.

Fig. 5 Densities (a) hc(V)and (b) hN(V) for small cracks in Al 2219-T851 at

the two cyclic stress amplitudes marked. The cracks ranged over

40 Pm 5 2c < 500 Pm.

Fig. 6 (a) Correlation between the average velocity over 1000 cycles,

dc/dN, and the aspect ratio, a/2c, when 2c = 100 pm at amax = o.9 2oy

in Al 2219-T851. Correlations between the cycles, Nr, to grow from

35
J9177D/sn



p
2c = 100 um to 2c = 300 pm and (b) a/2c and (c) dc/dN for the same

simulations as in (a). (d), (e) and (f) are the same as (a), (b) and

(c) but for cracks that are semi-elliptical when 2c = 100 pm. (g),

(h) and (i) are the same as (a), (b) and (c) but for max =.7y.

*1
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APPENDIX A

INITIATION IN UNUSUALLY LARGE GRAINS

Initiation of fatigue cracks in Al 2219-T851, whether by the fracture

of intermetallic particles, the formation of persistent slip bands, or grain

boundary failure, occurs first in surface grains whose width is between two

and five times the average [38]. That is not to say that initiation occurs

first in the largest grain: very large grains soften and harden again so

quickly in fatigue that they sustain relatively little plastic damage [19,391.

Rather, crack initiation events after a certain number of cycles are dis-

tributed over large grains of many sizes, with the details of the distribution

depending on the loading conditions and the alloy [39].

This state of affairs was represented in the Monte Carlo simulations

as follows. An area A, of random Voronoi polygons representing the micro-

structure was generated by the Wigner-Seitz construction, as described in [1]

(e.g., Fig. A-i). Then there was chosen a subdomain A2 of that area (e.g., as

marked in Fig. A-i) that was far enough from the boundaries of A1 that all

grains having at least one vertex in A2 were complete and unaffected by bound-

ary effects in the Wigner-Seitz construction. The largest such grain was then

selected as the site for crack initiation (e.g., the shaded grain in Fig. A-

1). The free specimen surface was created by bisecting the whole array of

Voronoi polygons by a line passing through the selected grain's center of mass

(point G in Fig. A-i). The initial crack was then located on the free surface

at a point chosen randomly in the selected grain. The factor by which the

average width of the selected grains in an ensemble of simulations exceeds the U
average width of all grains (measured through their centers of mass) obviously
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depends on the area of A2 . This is illustrated in Fig. A-2. The distribution

of the widths of the selected grains can be modified further by choosing the

area of A2 randomly: with a little playing round, any experimental distri-

bution can be matched.
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LIST OF FIGURES

Fig. A-I A nonequiaxed random microstructure, simulating a rolled sheet of Al

2219-T851, in which the largest grain (shaded) has been found in the

subdomain A2 of the total domain A, of calculated grains.

Fig. A-2 The distribution of widths of all grains compared to the distribu-

tions of the widths of grains selected as initiation sites for

various values of the side a2 of the square subdomain A2 , as marked.
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